Open Access
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
Page(s) 165 - 181
Published online 07 February 2022
  • B.F. Abbink and O. Wu, Reward self-reporting to deter corruption: an experiment on mitigating collusive bribery. J. Econ. Behav. Organiz. 133 (2017) 256–272. [CrossRef] [Google Scholar]
  • C. Audet, S. Belhaiza and P. Hansen, A new sequence form approach for the enumeration and refinement of all extreme Nash equilibia for extensive form games. Int. Game Theory Rev. 11 (2009) 437–451. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Banerjee, On the interpretation of bribery in a laboratory corruption game: moral frames and social norms. Exp. Econ. 19 (2016) 240–267. [CrossRef] [Google Scholar]
  • S. Belhaiza, S. Charrad and R. M’Hallah, On the performance of managers and controllers: a polymatrix game approach for the manager-controller-board of directors conflict. J. Optim. Theory App. 177 (2018) 584–602. [CrossRef] [Google Scholar]
  • V. Bilotkach, A tax evasion – bribery game: experimental evidence from Ukraine. Eur. J. Comp. Econ. 3 (2006) 31–49. [Google Scholar]
  • J. Bone and D. Spengler, Does reporting decrease corruption? J. Interdisciplinary Econ. 26 (2014) 161–186. [CrossRef] [Google Scholar]
  • E. Dechenaux and A. Samuel, Pre-emptive corruption, hold-up and repeated interactions. Economica 79 (2012) 258–283. [CrossRef] [Google Scholar]
  • M. Giamattei, To bribe or not to bribe. An extension to Lambsdorff and Frank (2007) corruption Game, Working Paper, Passau University, , Germany (2010). [Google Scholar]
  • P.N. Johnson-Laird and R.M.J. Byrne, Deduction. Lawrence Erlbaum Associates, New Jersey (1991). [Google Scholar]
  • H.W. Kuhn, Extensive games and the problem of information. In: Contributions to the Theory of Games II, edited by H.W. Kuhn and A. Tucker. Princeton University Press, Princeton (1953) 193–216. [Google Scholar]
  • J.G. Lambsdorffand B. Frank, Corrupt reciprocity. Experimental evidence on a men’s game. Int. Rev. Law Econ. 31 (2011) 116–125. [CrossRef] [Google Scholar]
  • J.G. Lambsdorff and M. Nell, Fighting corruption with asymmetric penalties and leniency. Center for European Governance and Economic Development Research, Workshop on November 16 (2006). [Google Scholar]
  • S. Lianju and P. Luyan, Game theory analysis of the bribery behavior. Int. J. Bus. Soc. Sci. 2 (2011) 104–107. [Google Scholar]
  • A. Lowen and A. Samuel, Bribery and endogenous monitoring effort: an experimental study., Eastern Econ. J. 38 (2012) 356–380. [CrossRef] [Google Scholar]
  • R.B. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, Cambridge-Massachusetts, London-England (1997. [Google Scholar]
  • U. Neisser, G. Boodoo, T.J. Bouchard, A.W. Boykin, N. Brody, S.J. Ceci, D.F. Halpern, J.C. Loehlin, R. Perloff, R.J. Sternberg and S. Urbina, Intelligence: knowns and unknowns. Am. Psychol. 51 (1996) 77–101. [CrossRef] [Google Scholar]
  • P.V. Nikolaev, Corruption suppression models: the role of inspectors’ moral level. Comput. Math. Model. 25 (2014) 87–102. [CrossRef] [MathSciNet] [Google Scholar]
  • B.F. Siggelkow, J. Trockel and O. Dieterle, An inspection game of internal audit and the influence of whistle blowing. J. Bus. Econ. 88 (2018) 883–914. [Google Scholar]
  • H. Simon, A behavioral model of rational choice. In: Models of Man, Social and Rational: Mathematical Essays on Rational Human Behavior in a Social Setting. Wiley, New York (1957). [Google Scholar]
  • D. Spengler, Endogenous detection of collaborative crime: the case of corruption. Rev. Law Econ. 10 (2014) 201–217. [Google Scholar]
  • P. Verma and S. Sengupta, Bribe and punishment: an evolutionary game-theoretic analysis of bribery. PLoS One 10 (2015) e0133441. [CrossRef] [PubMed] [Google Scholar]
  • World Bank, Empowering the poor to fight corruption. Online Article (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.