Open Access
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
Page(s) 831 - 851
Published online 14 April 2022
  • A.A. Alamri, Theory and methodology on the global optimal solution to a general reverse logistics inventory model for decorating items and time-varying rates. Comput Ind. Eng. 60 (2010) 236–247. [Google Scholar]
  • A. Aminipour, Z. Bahroun and M. Hariga, Cyclic manufacturing and remanufacturing in a closed-loop supply chain. Sust. Prod. Consum. 25 (2021) 43–59. [Google Scholar]
  • S. Bhuniya, S. Pareek and B. Sarkar, A supply chain model with service level constraints and strategies under uncertainty. Alex. Eng. J. 60 (2021) 6035–6052. [CrossRef] [Google Scholar]
  • S. Bhuniya, S. Pareek, B. Sarkar and B.K. Sett, A smart production process for the optimum energy consumption with maintenance policy under a supply chain management. Processes 9 (2021) 19. [Google Scholar]
  • J. Chai, Z. Qian, F. Wang and J. Zhu, Process innovation for green product in a closed loop supply chain with remanufacturing. To appear. Ann. Oper. Res. (2021) 1–25. DOI: 10.1007/s10479-020-03888-y. [Google Scholar]
  • C.C. Chang, C.J. Lu and C. Te, Multi-stage supply chain production-inventory model with collaborative preservation technology investment. To appear in: Sci. Iran. (2020). DOI: 10.24200/sci.2020.53357.3200. [Google Scholar]
  • I.D. Cho, Analysis of optimal production and advertising policies. Int. J. Syst. Sci. 27 (1996) 1297–1305. [CrossRef] [Google Scholar]
  • K. Conrad, Price competition and product differentiation when consumers care for the environment. Environ. Resour. Eco. 31 (2005) 1–19. [CrossRef] [Google Scholar]
  • B.K. Dey, S. Bhuniya and B. Sarkar, Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Syst. Appl. 184 (2021) 115464. [CrossRef] [Google Scholar]
  • B. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. 59 (2021) 1258–1280. [Google Scholar]
  • W.A. Donaldson, Inventory replenishment policy for a linear trend in demand: an analytical solution. Opers. Res. Q. 28 (1977) 663–670. [Google Scholar]
  • A.M.A. El Saadany and M.Y. Jaber, Reproduction/remanufacturing inventory model with price and quality dependent return rate. Comput. Ind. Eng. 58 (2010) 352–362. [CrossRef] [Google Scholar]
  • A.M.A. El Saadany, M.Y. Jaber and M. Bonney, Environmental performance measures for supply chain. Manage. Res. Rev. 34 (2011) 1202–1221. [Google Scholar]
  • L. Gennady, G.L. Brodetskiy, D.A. Gusev and I.G. Shidlovskii, Multi-criteria optimisation under the conditions of uncertainty in logistics and supply chain management. Int. J. Logist. Syst. Manage. 39 (2021) 207–227. [Google Scholar]
  • S.K. Goyal and B.C. Giri, The production inventory problem of a product with time varying demand, production and deteriorates. Eur. J. Oper. Res. 145 (2003) 635–644. [Google Scholar]
  • M.S. Habib, O. Asghar, A. Hussian, M. Imran, M.P. Mughal and B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 278 (2021) 122403. [CrossRef] [Google Scholar]
  • S. Hazari, K. Maity, J.K. Dey and S. Kar, Advertisement policy and reliability dependent imperfect production inventory control problem in bi-fuzzy environment. Int. J. Oper. Res. 22 (2015) 342–365. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Inderfurth, A. Janiak, M.Y. Kovalyov and F. Werner, Batching work and rework processes with limited deterioration of reworkable. Comput. Oper. Res. 33 (2006) 1595–1605. [CrossRef] [Google Scholar]
  • M. Karimi-Nasab, S. Dowlatshahi and H. Heidari, A multiobjective distribution-pricing model for multiperiod price sensitive demands. IEEE Trans. Eng. Manage. 60 (2013) 640–651. [Google Scholar]
  • M.A.A. Khan, A.A. Shaikh, I. Konstantaras, A.K. Bhunia and L.E. Cárdenas-Barrón, Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price. Int. J. Prod. Econ. 230 (2020) 107804. [CrossRef] [Google Scholar]
  • S. Kumar, A. Kumar and M. Jain, Learning effect on an optimal policy for mathematical inventory model for decaying items under preservation technology with the environment of COVID-19 pandemic. Malaya J. Mat. 8 (2020) 1694–1702. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kumar, B. Sarkar and A. Kumar, Fuzzy reverse logistics inventory model of smart items with two warehouses of a retailer considering carbon emissions. RAIRO-Oper. Res. 55 (2021) 2285–2307. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Z. Liu, J. Chen, C. Diallo and U. Venkatadri, Pricing and production decisions in a dual-channel closed-loop supply chain with (re) manufacturing. Int. J. Prod. Econ. 232 (2021) 107935. [CrossRef] [Google Scholar]
  • W.Y. Lo, C.H. Tsai and R.K. Li, Exact solution of inventory replenishment policy for a linear trend in demand- two-equation model. Int. J. Prod. Econ. 76 (2002) 111–120. [CrossRef] [Google Scholar]
  • A.K. Manna, J.K. Dey and S.K. Mondal, Imperfect production inventory model with production rate dependent defective rate and advertisement dependent demand. Comput. Ind. Eng. 104 (2017) 9–22. [Google Scholar]
  • S. Nahmias and H. Rivera, A deterministic model for a repairable item inventory system with finite repair rate. Int. J. Prod. Res. 17 (1979) 215–221. [CrossRef] [Google Scholar]
  • S. Rani, R. Ali and A. Agarwal, Green supply chain inventory model for that your rating items with valuable demand and the inflation. IJBAN 3 (2017) 50. [Google Scholar]
  • W. Ahmed, M. Moazzam, B. Sarkar and S.U. Rehman, Synergic effect of reworking for imperfect quality items with the integration of multi-period delay-in-payment and partial backordering in global supply chains. Engineering 7 (2021) 260–271. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Rani, R. Ali and A. Agarwal, Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand. Opsearch 56 (2019) 91–122. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Richter, The extended EOQ for repair and waste disposal model. Int. J. Prod. Econ. 45 (1996) 443–447. [CrossRef] [Google Scholar]
  • K. Richter, The EOQ repair and waste disposal model with variable set up numbers. Eur. J. Oper. Res. 9 (1996) 313–324. [CrossRef] [Google Scholar]
  • S. Saha, D. Chatterjee and B. Sarkar, The ramification of dynamic investment on the promotion and preservation technology for inventory management through a modified flower pollination algorithm. J. Retail. Consum. Serv. 58 (2021) 102326. [Google Scholar]
  • B. Sarkar, M. Ullah and M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 332 (2022) 129813. [CrossRef] [Google Scholar]
  • B. Sarkar, A. Debnath, A.S.F. Chiu and W. Ahmed, Circular economy-driven two-stage supply chain management for nullifying waste. J. Clean. Prod. 339 (2022) 130513. [CrossRef] [Google Scholar]
  • A.S.H. Kugele, W. Ahmed and B. Sarkar, Geometric programming solution of second degree difficulty for carbon ejection controlled reliable smart production system. To appear in: RAIRO Oper. Res. (2022). DOI: 10.1051/ro/2022028. [Google Scholar]
  • B. Sarkar, M. Sarkar, B. Ganguly and L.E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management. Int. J. Prod. Econ. 231 (2021) 107867. [CrossRef] [Google Scholar]
  • N. Saxena, S.R. Singh and S.S. Sana, A green supply chain model of vendor and buyer for remanufacturing. RAIRO-Oper. Res. 51 (2017) 1133–1150. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Garai and B. Sarkar, Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel. J. Clean. Prod. 334 (2022) 129977. [CrossRef] [Google Scholar]
  • D.A. Schrady, A deterministic inventory model for repairable items. Nav. Res. Logist. Q. 14 (1967) 391–398. [CrossRef] [Google Scholar]
  • M. Sebatjane and O. Adetunji, Optimal lot-sizing and shipment decisions in a three-echelon supply chain for growing items with inventory level-and expiration date-dependent demand. Appl. Math. Model. 90 (2021) 1204–1225. [Google Scholar]
  • A. Sepehri, U. Mishra, M.L. Tseng and B. Sarkar, Joint pricing and inventory model for deteriorating items with maximum lifetime and controllable carbon emissions under permissible delay in payments. Mathematics 9 (2021) 470. [CrossRef] [Google Scholar]
  • E.A. Silver and H.C. Meal, A simple modification of the EOQ for the case of varying demand rate. Prod. Invent. Manage. 10 (1969) 52–65. [Google Scholar]
  • E.A. Silver and R. Peterson, Decision systems for inventory management and production planning, 2nd edition, Wiley, New York (1985). [Google Scholar]
  • S.R. Singh, D. Yadav, B. Sarkar and M. Sarkar, Impact of energy and carbon emission of a supply chain management with two-level trade-credit policy. Energies 14 (2021) 1569. [CrossRef] [Google Scholar]
  • M. Tayyab and B. Sarkar, An interactive fuzzy programming approach for a sustainable supplier selection under textile supply chain management. Comput. Ind. Eng. 155 (2021) 107164. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, H.N. Soni, M.S. Mahapatra and B. Sarkar, A continuous review production-inventory system with a variable preparation time in a fuzzy random environment. Mathematics 9 (2021) 747. [CrossRef] [Google Scholar]
  • Y. Teng and B. Feng, Optimal channel structure for remanufacturing under cap-and-trade regulation. Processes 9 (2021) 370. [CrossRef] [Google Scholar]
  • D. Yadav, R. Kumari, N. Kumar and B. Sarkar, Reduction of waste and carbon emission through the selection of items with cross-price elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 297 (2021) 126298. [Google Scholar]
  • M. Ullah, I. Asghar, M. Zahid, M. Omair, A.A. Arjani and B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J. Clean. Prod. 290 (2021) 125609. [CrossRef] [Google Scholar]
  • R. UthayaKumar, K.V. Geetha and S.S. Sana, Economic ordering policy for non-instantaneous deteriorating items with price and advertisement dependent demand and permissible delay in payment under inflation. Math. Methods Appl. Sci. 44 (2021) 7697–7721. [CrossRef] [MathSciNet] [Google Scholar]
  • G.A. Widyadana and H.M. Wee, An economic production quantity model for deteriorating items with multiple production setups and rework. Int. J. Prod. Econ. 138 (2012) 62–67. [Google Scholar]
  • Vandana, S.R. Singh, D. Yadav, B. Sarkar and M. Sarkar, Impact of energy and carbon emission of a supply chain management with two-level trade-credit policy. Energies 14 (2021) 1569. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.