Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 2, March-April 2022
Page(s) 751 - 768
DOI https://doi.org/10.1051/ro/2022021
Published online 14 April 2022
  • D. Adebanjo, P.-L. Teh and P.K. Ahmed, The impact of supply chain relationships and integration on innovative capabilities and manufacturing performance: the perspective of rapidly developing countries. Int. J. Prod. Res. 56 (2018) 1708–1721. [CrossRef] [Google Scholar]
  • M. Akbarpour, S.A. Torabi and A. Ghavamifar, Designing an integrated pharmaceutical relief chain network under demand uncertainty. Transp. Res. Part E: Logistics Transp. Rev. 136 (2020) 101867. [CrossRef] [Google Scholar]
  • O. Berman, Z. Drezner and G.O. Wesolowsky, The facility and transfer points location problem. Int. Trans. Oper. Res. 12 (2005) 387–402. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Boostani, F. Jolai and A. Bozorgi-Amiri, Optimal location selection of temporary accommodation sites in Iran via a hybrid fuzzy multiple-criteria decision making approach. J. Urban Planning Dev. 144 (2018) 04018039. [CrossRef] [Google Scholar]
  • A. Boostani, F. Jolai and A. Bozorgi-Amiri, Designing a sustainable humanitarian relief logistics model in pre-and postdisaster management. Int. J. Sustainable Transp. 15 (2021) 604–620. [CrossRef] [Google Scholar]
  • A. Bozorgi-Amiri, M.S. Jabalameli and S.M. Al-e-Hashem, A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR Spectr. 35 (2013) 905–933. [CrossRef] [Google Scholar]
  • V. Cantillo, I. Serrano, L.F. Macea and J. Holgun-Veras, Discrete choice approach for assessing deprivation cost in humanitarian relief operations. Soc.-Econ. Planning Sci. 63 (2018) 33–46. [CrossRef] [Google Scholar]
  • X. Cao, F. Liang, H. Chen and Y. Liu, Circuity characteristics of urban travel based on GPS data: a case study of Guangzhou. Sustainability. 9 (2017) 2156. [CrossRef] [Google Scholar]
  • C. Cao, C. Li, Q. Yang, Y. Liu and T. Qu, A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. J. Cleaner Prod. 174 (2018) 1422–1435. [CrossRef] [Google Scholar]
  • M.H. Dehghani Sadrabadi, R. Ghousi and A. Makui, An enhanced robust possibilistic programming approach for forward distribution network design with the aim of establishing social justice: a real-world application. J. Ind Syst. Eng. 12 (2019) 76–106. [Google Scholar]
  • M.H. Dehghani Sadrabadi, A. Jafari Nodoushan and A. Bozorgi-Amiri, Resilient supply chain under risks: a network and structural perspective. Iran. J. Manage. Stud. 14 (2021) 735–760. [Google Scholar]
  • M.H. Dehghani Sadrabadi, R. Ghousi and A. Makui, Designing a disruption-aware supply chain network considering precautionary and contingency strategies: a real-life case study. RAIRO-Oper. Res. 55 (2021) 2827–2860. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R. Dubey and A. Gunasekaran, The sustainable humanitarian supply chain design: agility, adaptability and alignment. Int. J. Logistics Res. App. 19 (2016) 62–82. [CrossRef] [Google Scholar]
  • R. Espejo and V. Lepskiy, An agenda for ontological cybernetics and social responsibility. Kybernetes (2020). DOI: 10.1108/k-06-2020-0390. [Google Scholar]
  • T. Furuta and K.-I. Tanaka, Minisum and minimax location models for helicopter emergency medical service systems. J. Oper. Res. Soc. Jpn. 56 (2013) 221–242. [Google Scholar]
  • G. Galindo and R. Batta, Review of recent developments in OR/MS research in disaster operations management. Eur. J. Oper. Res. 230 (2013) 201–211. [CrossRef] [Google Scholar]
  • A. Ghaderi and M. Momeni, A multi-period maximal coverage model for locating simultaneous ground and air emergency medical services facilities. J. Ambient Intell. Humanized Comput. 12 (2021) 1577–1600. [CrossRef] [Google Scholar]
  • I. Haavisto and G. Kovács, Perspectives on sustainability in humanitarian supply chains. Disaster Prev. Manage. 23 (2014) 610–631. [CrossRef] [Google Scholar]
  • A. Hasani and H. Mokhtari, An integrated relief network design model under uncertainty: a case of Iran. Safety Sci. 111 (2019) 22–36. [CrossRef] [Google Scholar]
  • J. Holgun-Veras, N. Pérez, M. Jaller, L.N. Van Wassenhove and F. Aros-Vera, On the appropriate objective function for post-disaster humanitarian logistics models. J. Oper. Manage. 31 (2013) 262–280. [CrossRef] [Google Scholar]
  • H. Kaur and S.P. Singh, Sustainable procurement and logistics for disaster resilient supply chain. Ann. Oper. Res. 283 (2019) 309–354. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Kebriyaii, M. Hamzehei and M. Khalilzadeh, A disaster relief commodity supply chain network considering emergency relief volunteers: a case study. To appear in: J. Humanitarian Logistics Supply Chain Manage. (2021). DOI: 10.1108/JHLSCM-08-2020-0073. [Google Scholar]
  • S. Khoshnoodmotlagh, A. Daneshi, S. Gharari, J. Verrelst, M. Mirzaei and H. Omrani, Urban morphology detection and it’s linking with land surface temperature: a case study for Tehran Metropolis, Iran. Sustainable Cities Soc. 74 (2021) 103228. [CrossRef] [Google Scholar]
  • N. Kunz and S. Gold, Sustainable humanitarian supply chain management–exploring new theory. Int. J. Logistics Res. App. 20 (2017) 85–104. [CrossRef] [Google Scholar]
  • Y. Liu and B. Guo, A lexicographic approach to postdisaster relief logistics planning considering fill rates and costs under uncertainty. Math. Prob. Eng. 2014 (2014) 939853. [MathSciNet] [Google Scholar]
  • J. Liu and K. Xie, Emergency materials transportation model in disasters based on dynamic programming and ant colony optimization. Kybernetes 46 (2017) 656–671. [CrossRef] [Google Scholar]
  • S. Mansoori, A. Bozorgi-Amiri and M.S. Pishvaee, A robust multi-objective humanitarian relief chain network design for earthquake response, with evacuation assumption under uncertainties. Neural Comput. App. 32 (2020) 2183–2203. [CrossRef] [Google Scholar]
  • M. Mousazadeh, S.A. Torabi and M.S. Pishvaee, Green and reverse logistics management under fuzziness. In: Supply Chain Management Under Fuzziness. Springer (2014) 607–637. [Google Scholar]
  • M. Nili, S.M. Seyedhosseini, M.S. Jabalameli and E. Dehghani, A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: a case study in Iran. Renew. Sustainable Energy Rev. 150 (2021) 111428. [Google Scholar]
  • M. Nili, S.M. Seyedhosseini, M.S. Jabalameli and E. Dehghani, An integrated model for designing a bi-objective closed-loop solar photovoltaic supply chain network considering environmental impacts: a case study in Iran. J. Ind. Syst. Eng. 13 (2021) 243–280. [Google Scholar]
  • P. Oberhofer, E.E. Blanco and A.J. Craig, Carbon efficiency of humanitarian supply chains: evidence from French Red Cross operations. In: Logistics Management. Springer (2015) 53–66. [CrossRef] [Google Scholar]
  • M.S. Pishvaee, S.A. Torabi and J. Razmi, Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62 (2012) 624–632. [Google Scholar]
  • R. Pradhananga, F. Mutlu, S. Pokharel, J. Holgun-Veras and D. Seth, An integrated resource allocation and distribution model for pre-disaster planning. Comput. Ind. Eng. 91 (2016) 229–238. [CrossRef] [Google Scholar]
  • M. Rahafrooz and M. Alinaghian, A novel robust chance constrained possibilistic programming model for disaster relief logistics under uncertainty. Int. J. Ind. Eng. Comput. 7 (2016) 649–670. [Google Scholar]
  • C.G. Rawls and M.A. Turnquist, Pre-positioning and dynamic delivery planning for short-term response following a natural disaster. Soc.-Econ. Planning Sci. 46 (2012) 46–54. [CrossRef] [Google Scholar]
  • M. Re, Annual Review: Natural Catastrophes 2004. Knowledge Series (2005). [Google Scholar]
  • F. Sabouhi, A. Bozorgi-Amiri, M. Moshref-Javadi and M. Heydari, An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study. Ann. Oper. Res. 283 (2019) 643–677. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Sabouhi, Z.S. Tavakoli, A. Bozorgi-Amiri and J.-B. Sheu, A robust possibilistic programming multi-objective model for locating transfer points and shelters in disaster relief. Transp. A: Transp. Sci. 15 (2019) 326–353. [Google Scholar]
  • F. Sabouhi, A. Bozorgi-Amiri and P. Vaez, Stochastic optimization for transportation planning in disaster relief under disruption and uncertainty. Kybernetes 50 (2021) 2632–2650. [CrossRef] [Google Scholar]
  • F. Sabouhi, M.S. Jabalameli and A. Jabbarzadeh, An optimization approach for sustainable and resilient supply chain design with regional considerations. Comput. Ind. Eng. 159 (2021) 107510. [CrossRef] [Google Scholar]
  • J. Salmerón and A. Apte, Stochastic optimization for natural disaster asset prepositioning. Prod. Oper. Manage. 19 (2010) 561–574. [CrossRef] [Google Scholar]
  • M. Shahriari, A. Bozorgi-Amiri, S. Tavakoli and A. Yousefi-Babadi, Bi-objective approach for placing ground and air ambulance base and helipad locations in order to optimize EMS response. Am. J. Emergency Med. 35 (2017) 1873–1881. [CrossRef] [Google Scholar]
  • J.-B. Sheu and C. Pan, Relief supply collaboration for emergency logistics responses to large-scale disasters. Transp. A Transp. Sci. 11 (2015) 210–242. [Google Scholar]
  • S. Tofighi, S.A. Torabi and S.A. Mansouri, Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 250 (2016) 239–250. [CrossRef] [Google Scholar]
  • G.-H. Tzeng, H.-J. Cheng and T.D. Huang, Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E: Logistics Transp. Rev. 43 (2007) 673–686. [CrossRef] [Google Scholar]
  • R. Ulucak and S.U.-D. Khan, Determinants of the ecological footprint: role of renewable energy, natural resources, and urbanization. Sustainable Cities Soc. 54 (2020) 101996. [CrossRef] [Google Scholar]
  • P. Vaez, F. Sabouhi and M.S. Jabalameli, Sustainability in a lot-sizing and scheduling problem with delivery time window and sequence-dependent setup cost consideration. Sustainable Cities Soc. 51 (2019) 101718. [Google Scholar]
  • L. Wang, L. Yang, Z. Gao, S. Li and X. Zhou, Evacuation planning for disaster responses: A stochastic programming framework. Transp. Res. Part C: Emerging Technol. 69 (2016) 150–172. [CrossRef] [Google Scholar]
  • X. Wei, A. Al-Refaie, M. Robles and B. Noche, A sustainable humanitarian relief network study for the Wenchuan earthquake. In: Humanitarian Logistics and Sustainability. Springer (2015) 193–213. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.