Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1167 - 1185
DOI https://doi.org/10.1051/ro/2022048
Published online 17 May 2022
  • S. Ahmadi and I.H. Osman, Greedy random adaptive memory programming search for the capacitated clustering problem. Eur. J. Oper. Res. 162 (2005) 30–44. [CrossRef] [Google Scholar]
  • J. Brimberg, N. Mladenović, R. Todosijević and D. Urošević, Solving the capacitated clustering problem with variable neighborhood search. Ann. Oper. Res. 272 (2019) 289–321. [CrossRef] [MathSciNet] [Google Scholar]
  • G.O. Chagas, L.A.N. Lorena and R.D.C. dos Santos, A hybrid heuristic for the overlapping cluster editing problem. Appl. Soft Comput. (2019) 105–482. [Google Scholar]
  • A.A. Chaves and L.A.N. Lorena, Clustering search algorithm for the capacitated centered clustering problem. Comput. Oper. Res. 37 (2010) 552–558. Hybrid Metaheuristics. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Chaves and L.A.N. Lorena, Hybrid evolutionary algorithm for the capacitated centered clustering problem. Exp. Syst. App. 38 (2011) 5013–5018. [CrossRef] [Google Scholar]
  • A.A. Chaves, J.F. Gonçalves and L.A.N. Lorena, Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem. Comput. Ind. Eng. 124 (2018) 331–346. [CrossRef] [Google Scholar]
  • A.T. Dauer and B.A. Prata, Variable fixing heuristics for solving multiple depot vehicle scheduling problem with heterogeneous fleet and time windows. Optim. Lett. 15 (2021) 153–170. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Deng and J.F. Bard, A reactive grasp with path relinking for capacitated clustering. J. Heuristics 17 (2011) 119–152. [CrossRef] [Google Scholar]
  • L. Fanjul-Peyro and Rubén Ruiz, Size-reduction heuristics for the unrelated parallel machines scheduling problem. Comput. Oper. Res. 38 (2011) 301–309. Project Management and Scheduling. [CrossRef] [Google Scholar]
  • T.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim. 6 (1995) 109–133. [CrossRef] [Google Scholar]
  • P.M. França, N.M. Sosa and V. Pureza, An adaptive tabu search algorithm for the capacitated clustering problem. Int. Trans. Oper. Res. 6 (1999) 665–678. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability. Vol 174. Freeman, San Francisco (1979). [Google Scholar]
  • S. Geetha, G. Poonthalir and P.T. Vanathi, Improved #-means algorithm for capacitated clustering problem. INFOCOMP J. Comput. Sci. 8 (2009) 52–59. [Google Scholar]
  • M. Gnägi and P. Baumann, A matheuristic for large-scale capacitated clustering. Comput. Oper. Res. 132 (2021) 105304. [CrossRef] [Google Scholar]
  • X. Lai and J.-K. Hao, Iterated variable neighborhood search for the capacitated clustering problem. Eng. App. Artif. Intell. 56 (2016) 102–120. [CrossRef] [Google Scholar]
  • F. Mai, M.J. Fry and J.W. Ohlmann, Model-based capacitated clustering with posterior regularization. Eur. J. Oper. Res. 271 (2018) 594–605. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Martnez-Gavara, D. Landa-Silva, V. Campos and R. Mart, Randomized heuristics for the capacitated clustering problem. Inf. Sci. 417 (2017) 154–168. [CrossRef] [Google Scholar]
  • D.C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons (2017). [Google Scholar]
  • J.M. Mulvey and M.P. Beck, Solving capacitated clustering problems. Eur. J. Oper. Res. 18 (1984) 339–348. [CrossRef] [Google Scholar]
  • M. Negreiros and A. Palhano, The capacitated centred clustering problem. Comput. Oper. Res. 33 (2006) 1639–1663. [CrossRef] [Google Scholar]
  • M.J. Negreiros, N. Maculan, P.L. Batista, J.A. Rodrigues and A.W.C. Palhano, Capacitated clustering problems applied to the layout of it-teams in software factories. Ann. Oper. Res. (2020) 1–29. [Google Scholar]
  • I.H. Osman and N. Christofides, Capacitated clustering problems by hybrid simulated annealing and tabu search. Int. Trans. Oper. Res. 1 (1994) 317–336. [CrossRef] [Google Scholar]
  • B.A. Prata, The multi capacitated clustering problem. Technical report, Federal University of Ceará, Brazil (2015). [Google Scholar]
  • S. Scheuerer and R. Wendolsky, A scatter search heuristic for the capacitated clustering problem. Eur. J. Oper. Res. 169 (2006) 533–547. [CrossRef] [Google Scholar]
  • H.-M. Shieh and M.-D. May, Solving the capacitated clustering problem with genetic algorithms. J. Chin. Inst. Ind. Eng. 18 (2001) 1–12. [Google Scholar]
  • F. Stefanello, O.C.B. de Araújo and F.M. Müller, Matheuristics for the capacitated p-median problem. Int. Trans. Oper. Res. 22 (2015) 149–167. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Yang, H. Chen and F. Chu, A lagrangian relaxation approach for a large scale new variant of capacitated clustering problem. Comput. Ind. Eng. 61 (2011) 430–435. Combinatorial Optimizatiion in Industrial Engineering. [CrossRef] [Google Scholar]
  • Q. Zhou, U. Benlic, Q. Wu and J.-K. Hao, Heuristic search to the capacitated clustering problem. Eur. J. Oper. Res. 273 (2019) 464–487. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.