Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
|
|
---|---|---|
Page(s) | 1737 - 1762 | |
DOI | https://doi.org/10.1051/ro/2022067 | |
Published online | 30 June 2022 |
- R. Abounacer, M. Rekik and J. Renaud, An exact solution approach for multi-objective location–transportation problem for disaster response. Comput. Oper. Res. 41 (2014) 83–93. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ahmadi, A. Seifi and B. Tootooni, A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: a case study on San Francisco district. Transp. Res. Part E 75 (2015) 145–163. [CrossRef] [Google Scholar]
- B. Balcik and B.M. Beamon, Facility location in humanitarian relief. Int. J. logistics 11 (2008) 101–121. [CrossRef] [Google Scholar]
- F. Barzinpour and V. Esmaeili, Multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 70 (2014) 1291–1302. [CrossRef] [Google Scholar]
- B.M. Beamon and S.A. Kotleba, Inventory modelling for complex emergencies in humanitarian relief operations. Int. J. Logistics: Res. App. 9 (2006) 1–18. [CrossRef] [Google Scholar]
- H. Beiki, S.M. Seyedhosseini, L. Mihardjo and S.M. Seyedaliakbar, Environmental science and pollution research international (2021). DOI: 10.1007/s11356-020-11891-w. [Google Scholar]
- A. Bozorgi-Amiri, M. Jabalameli and S. Mirzapour Al-e Hashem, A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR Spect. 35 (2013) 905–933. [CrossRef] [Google Scholar]
- C. Burkart, P. Nolz and W. Gutjahr, Modelling beneficiaries’ choice in disaster relief logistics. Ann. Oper. Res. 256 (2017) 41–61. [CrossRef] [MathSciNet] [Google Scholar]
- A.M. Caunhye, X. Nie and S. Pokharel, Optimization models in emergency logistics: a literature review. Soc.-Econ. Planning Sci. 46 (2011) 4–13. [Google Scholar]
- S. Chanta and O. Sangsawang, Shelter-site selection during flood disaster. Lect. Notes Manage. Sci. 4 (2012) 282–288. [Google Scholar]
- CRED, Natural disasters 2017. Report on human cost of natural disasters: a global perspective (2018). [Google Scholar]
- V. Cruz Atienza, I. Shri Krishna and M. Ordaz, Qué ocurrió el 19 de septiembre de 2017 en México?. Online. Accessed: 16 May 2019 http://ciencia.unam.mx/leer/652/-que-ocurrio-el-19-de-septiembre-de-2017-en-mexico (2017). [Google Scholar]
- Datos Abiertos, Daños y derrumbes en edificios y estructuras por el sismo 19-S. Online. Accessed: 16 May 2019 https://datos.gob.mx/busca/dataset/danos-y-derrumbes-en-edificios-y-estructuras-por-el-sismo-19-s (2017). [Google Scholar]
- K. Doerner, A. Focke and W.J. Gutjahr, Multicriteria tour planning for mobile healthcare facilities in a developing country. Eur. J. Oper. Res. 179 (2007) 1078–1096. [CrossRef] [Google Scholar]
- A. Döyen, N. Aras and G. Barbarosoglu, A two-echelon stochastic facility location model for humanitarian relief logistics. Optim. Lett. 6 (2012) 1123–1145. [CrossRef] [MathSciNet] [Google Scholar]
- A. Fredriksson, Location-allocation of public services–citizen access, transparency and measurement: a method and evidence from brazil and sweden. Soc.-Econ. Planning Sci. 59 (2017) 1–12. [CrossRef] [Google Scholar]
- G. Galvin, 10 of the deadliest natural disasters of 2017. Accessed: 18 September 2018. U.S. News (2017). [Google Scholar]
- S. Geng, H. Hou and Z. Zhou, A hybrid approach of VIKOR and bi-objective decision model for emergency shelter location–allocation to respond to earthquakes. Mathematics 9 (2021). DOI: 10.3390/math9161897. [CrossRef] [Google Scholar]
- W.J. Gutjahr and N. Dzubur, Bi-objective bilevel optimization of distribution center locations considering user equilibria. Transp. Res. Part E: Logistics Transp. Rev. 85 (2016) 1–22. [CrossRef] [Google Scholar]
- W.J. Gutjahr and P.C. Nolz, Multicriteria optimization in humanitarian aid. Eur. J. Oper. Res. 252 (2016) 351–366. [CrossRef] [Google Scholar]
- I.M. Hezam and M.k. Nayeem, A systematic literature review on mathematical models of humanitarian logistics. Symmetry 13 (2021) 11. [Google Scholar]
- Z.H. Hu and J.B. Sheu, Post-disaster debris reverse logistics management under psychological cost minimization. Transp. Res. Part B: Methodol. 55 (2013) 118–141. [CrossRef] [Google Scholar]
- K. Huang, Y. Jiang, Y. Yuan and L. Zhao, Modeling multiple humanitarian objectives in emergency response to large-scale disasters. Transp. Res. Part E Logistics Transp. Rev. 75 (2015) 1–17. [CrossRef] [Google Scholar]
- L.M. Jensen and S. Hertz, The coordination roles of relief organisations in humanitarian logistics. Int. J. Logistics Res. App. 19 (2016) 465–485. [CrossRef] [Google Scholar]
- Z. Juman, R. M’Hallah, R. Lokuhetti and O. Battaa, A multi-vendor multi-buyer integrated production-inventory model with synchronised unequal-sized batch delivery. Int. J. Prod. Res. 1 (2021) 1–23. DOI: 10.1080/00207543.2021.2009586. [CrossRef] [Google Scholar]
- S. Khalilpourazari and A.A. Khamseh, Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Ann. Oper. Res. 293 (2019) 355–393. [CrossRef] [MathSciNet] [Google Scholar]
- D. Khayal, R. Pradhananga, S. Pokharel and F. Mutlu, A model for planning locations of temporary distribution facilities for emergency response. Soc.-Econ. Planning Sci. 52 (2015) 22–30. [CrossRef] [Google Scholar]
- G. Kovacs and K.M. Spens, Humanitarian logistics in disaster relief operations. Int. J. Phys. Distribution Logistics Manage. 37 (2007) 99–114. [CrossRef] [Google Scholar]
- M. Koyuncu and R. Erol, Optimal resource allocation model to mitigate the impact of pandemic influenza: a case study for Turkey. J. Med. Syst. 34 (2010) 61–70. [CrossRef] [PubMed] [Google Scholar]
- F. Liberatore, M. Ortuño, G. Tirado, B. Vitoriano and M. Scaparra, A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in humanitarian logistics. Comput. Oper. Res. 42 (2014) 3–13. [CrossRef] [MathSciNet] [Google Scholar]
- K.F. Man, Genetic Algorithms: Concepts and Designs. Praxis (1999). [CrossRef] [Google Scholar]
- R. Marti, J.L.G. Velarde and A. Duarte, Heuristics for the bi-objective path dissimilarity problem. Comput. Oper. Res. 36 (2009) 2905–2912. [CrossRef] [Google Scholar]
- G. Mavrotas, Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Appl. Math. Comput. 213 (2009) 455–465. [MathSciNet] [Google Scholar]
- A. Moreno, D. Ferreira and D. Alem, Modelo biobjetivo para el problema de localización de centros de auxilio y distribución de productos en situaciones de respuesta a desastres. DYNA 84 (2017) 356–366. [CrossRef] [Google Scholar]
- Z. Naji-Azimi, J. Renaud, A. Ruiz and M. Salari, A covering tour approach to the location of satellite distribution centers to supply humanitarian aid. Eur. J. Oper. Res. 222 (2012) 596–605. [CrossRef] [Google Scholar]
- S. Nayeri, E. Asadi-Gangraj, S. Emami and J. Rezaeian, Designing a bi-objective decision support model for the disaster management. RAIRO-Oper. Res. 55 (2021) 3399–3426. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R. Noham and M. Tzur, Designing humanitarian supply chains by incorporating actual post-disaster decisions. Eur. J. Oper. Res. 265 (2018) 1064–1077. [CrossRef] [Google Scholar]
- P.C. Nolz, K.F. Doerner and R.F. Hartl, Water distribution in disaster relief. Int. J. Phys. Distrib. Logistics Manage. 40 (2010) 693–708. [CrossRef] [Google Scholar]
- P.C. Nolz, F. Semet and K.F. Doerner, Risk approaches for delivering disaster relief supplies. OR Spect. 33 (2011) 543–569. [CrossRef] [Google Scholar]
- Organización Panamericana de la Salud/Organización Mundial de la Salud, Informe de situación: Sismo en México, 22 de septiembre de 2017. OPS/OMS, Washington, DC (2017). [Google Scholar]
- M. Ortuño, G. Tirado and B.A. Vitoriano, Lexicographical goal programming based decision support system for logistics of humanitarian aid. TOP 19 (2011) 464–479. [CrossRef] [MathSciNet] [Google Scholar]
- S.J. Pettit and A.K. Beresford, Emergency relief logistics: an evaluation of military, non-military and composite response models. Int. J. Logistics Res. App. 8 (2005) 313–331. [CrossRef] [Google Scholar]
- P. Praneetpholkrang, V.N. Huynh and S. Kanjanawattana, A multi-objective optimization model for shelter location-allocation in response to humanitarian relief logistics. Asian J. Shipping Logistics 37 (2021) 149–156. [CrossRef] [Google Scholar]
- S. Rath and W. Gutjahr, A math-heuristic for the warehouse location-routing problem in disaster relief. Comput. Oper. Res. 42 (2014) 25–39. [CrossRef] [MathSciNet] [Google Scholar]
- C.G. Rawls and M.A. Turnquist, Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 44 (2010) 521–534. [CrossRef] [Google Scholar]
- M. Rezaei-Malek, R. Tavakkoli-Moghaddam, B. Zahiri and A. Bozorgi-Amiri, An interactive approach for designing a robust disaster relief logistics network with perishable commodities. Comput. Ind. Eng. 94 (2016) 201–215. [CrossRef] [Google Scholar]
- O. Rodríguez-Espíndola, P. Albores and C. Brewster, Disaster preparedness in humanitarian logistics: a collaborative approach for resource management in floods. Eur. J. Oper. Res. 264 (2018) 978–993. [CrossRef] [Google Scholar]
- B. Rottkemper and K. Fischer, Decision making in humanitarian logistics : a multi-objective optimization model for relocating relief goods during disaster recovery operations. In: ISCRAM 2013, 10th International Conference on Information Systems for Crisis Response and Management 2013. Baden-Baden (2013) 647–657. [Google Scholar]
- B. Rottkemper, K. Fischer and A. Blecken, A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations. Soc.-Econ. Planning Sci. 46 (2012) 98–109. [CrossRef] [Google Scholar]
- J.B. Sheu and C. Pan, A method for designing centralized emergency supply network to respond to large-scale natural disasters. Transp. Res. Part B Methodol. 67 (2014) 284–305. [CrossRef] [Google Scholar]
- F. Tricoire, A. Graf and W. Gutjahr, The bi-objective stochastic covering tour problem. Comput. Oper. Res. 39 (2012) 1582–1592. [CrossRef] [MathSciNet] [Google Scholar]
- G.H. Tzeng, H.J. Cheng and T.D. Huang, Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E 43 (2007) 673–686. [CrossRef] [Google Scholar]
- United States Census Bureau. Accessed: 03 January 2022. https://www.census.gov (2022). [Google Scholar]
- B. Vahdani, D. Veysmoradi, F. Noori and F. Mansour, Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty. Int. J. Disaster Risk Reduct. 27 (2018) 290–306. [Google Scholar]
- H. Wang, L. Du and S. Ma, Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transp. Res. Part E 69 (2014) 160–179. [CrossRef] [Google Scholar]
- L. Wang, J. Song and L. Shi, Dynamic emergency logistics planning: models and heuristic algorithm. Optim. Lett. 9 (2015) 1533–1552. [CrossRef] [MathSciNet] [Google Scholar]
- L. Zhang and N. Cui, Pre-positioning facility location and resource allocation in humanitarian relief operations considering deprivation costs. Sustainability 13 (2021). [Google Scholar]
- E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3 (1999) 257–271. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.