Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1841 - 1856
DOI https://doi.org/10.1051/ro/2022079
Published online 30 June 2022
  • B. Ahmad and L. Benkherouf, On an optimal replenishment policy for inventory models for non-instantaneous deteriorating items with stock dependent demand and partial backlogging. RAIRO-Oper. Res. 54 (2020) 69–79. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H.K. Alfares and A.M. Ghaithan, Inventory and pricing model with price-dependent demand, time-varying holding cost, and quantity discounts. Comput. Indust. Eng. 94 (2016) 170–177. [CrossRef] [Google Scholar]
  • P. Asim, M. Pervin, S.K. Roy, G.-W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO-Oper. Res. 55 (2021) 2575. [Google Scholar]
  • T. Avinadav, A. Herbon and U. Spiegel, Optimal inventory policy for a perishable item with demand function sensitive to price and time. Int. J. Prod. Econ. 144 (2013) 497–506. [Google Scholar]
  • A. Bhunia and A. Shaikh, A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter weibull distributed deterioration. Int. J. Indust. Eng. Comput. 5 (2014) 497–510. [Google Scholar]
  • A. Cambini and L. Martein, Convex functions. Generalized Convexity Optim.: Theory Appl. (2009) 1–21. [Google Scholar]
  • M. Choudhury and G.C. Mahata, Sustainable integrated and pricing decisions for two-echelon supplier–retailer supply chain of growing items. RAIRO-Oper. Res. 55 (2021) 3171–3195. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • C.-Y. Dye, The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega 41 (2013) 872–880. [CrossRef] [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling price dependent demand, and investment. RAIRO-Oper. Res. 53 (2019) 39–57. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Y. Duan and Y. Cao, Optimal pricing and deteriorating inventory control when inventory stimulates stochastic demand with reference price effect. RAIRO-Oper. Res. 55 (2021) S1803–S1821. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Ferguson, V. Jayaraman and G.C. Souza, Note: An application of the EOQ model with nonlinear holding cost to inventory management of perishables. Eur. J. Oper. Res. 180 (2007) 485–490. [CrossRef] [Google Scholar]
  • P. Gautam, S. Maheshwari, A. Hasan, A. Kausar and C.K. Jaggi, Optimal inventory strategies for an imperfect production system with advertisement and price reliant demand under rework option for defectives. RAIRO-Oper. Res. 56 (2022) 183–197. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P.M. Ghare, A model for an exponentially decaying inventory. J. Indust. Eng. 14 (1963) 238–243. [Google Scholar]
  • M. Ghoreishi, G.-W. Weber and A. Mirzazadeh, An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation-and selling price-dependent demand and customer returns. Ann. Oper. Res. 226 (2015) 221–238. [CrossRef] [MathSciNet] [Google Scholar]
  • F.W. Harris, How Many Parts to Make at Once (1913). [Google Scholar]
  • Y. He and H. Huang, Optimizing inventory and pricing policy for seasonal deteriorating products with preservation technology investment. J. Indust. Eng. 2013 (2013). [Google Scholar]
  • P.H. Hsu, H.M. Wee and H.M. Teng, Preservation technology investment for deteriorating inventory. Int. J. Prod. Econ. 124 (2010) 388–394. [Google Scholar]
  • C.K. Jaggi, S. Tiwari and S.K. Goel, Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann. Oper. Res. 248 (2017) 253–280. [Google Scholar]
  • MdA-A Khan, A.A. Shaikh, G.C. Panda, I. Konstantaras and A.A. Taleizadeh, Inventory system with expiration date: Pricing and replenishment decisions. Comput. Indust. Eng. 132 (2019) 232–247. [CrossRef] [Google Scholar]
  • A. Khanna, A. Kishore, B. Sarkar and C.K. Jaggi, Inventory and pricing decisions for imperfect quality items with inspection errors, sales returns, and partial backorders under inflation. RAIRO-Oper. Res. 54 (2020) 287–306. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Khanna, P. Pritam and C.K. Jaggi, Optimizing preservation strategies for deteriorating items with time-varying holding cost and stock-dependent demand. Yugoslav J. Oper. Res. 30 (2020) 237–250. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Li, X. He, J. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega 84 (2019) 114–126. [CrossRef] [Google Scholar]
  • R. Maihami and I.N. Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int. J. Prod. Econ. 136 (2012) 116–122. [CrossRef] [Google Scholar]
  • A.K. Maiti, M.K. Maiti and M. Maiti, Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Appl. Math. Model. 33 (2009) 2433–2443. [CrossRef] [MathSciNet] [Google Scholar]
  • AHMd Mashud, D. Roy, Y. Daryanto and H.-M. Wee, Joint pricing deteriorating inventory model considering product life cycle and advance payment with a discount facility. RAIRO-Oper. Res. 55 (2021) S1069–S1088. [CrossRef] [EDP Sciences] [Google Scholar]
  • U. Mishra, J. Tijerina-Aguilera, S. Tiwari and L.E. Cárdenas-Barrón, Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Math. Probl. Eng. 2018 (2018). [CrossRef] [Google Scholar]
  • B. Mondal, A.K. Bhunia and M. Maiti, An inventory system of ameliorating items for price dependent demand rate. Comput. indust. Eng. 45 (2003) 443–456. [CrossRef] [Google Scholar]
  • S. Mukhopadhyay, R.N. Mukherjee and K.S. Chaudhuri, Joint pricing and ordering policy for a deteriorating inventory. Comput. Indust. Eng. 47 (2004) 339–349. [CrossRef] [Google Scholar]
  • S. Mukhopadhyay, R.N. Mukherjee and K.S. Chaudhuri, An EOQ model with two-parameter weibull distribution deterioration and price-dependent demand. Int. J. Math. Educ. Sci. Technol. 36 (2005) 25–33. [CrossRef] [Google Scholar]
  • G.C. Philip, A generalized EOQ model for items with weibull distribution deterioration. AIIE Trans. 6 (1974) 159–162. [CrossRef] [Google Scholar]
  • C. Rout, D. Chakraborty and A. Goswami, A production inventory model for deteriorating items with backlog-dependent demand. RAIRO-Oper. Res. 55 (2021) 549. [Google Scholar]
  • A. Roy, An inventory model for deteriorating items with price dependent demand and time varying holding cost. Adv. Model. Optim. 10 (2008) 25–37. [Google Scholar]
  • T. Roy and K.S. Chaudhuri, An inventory model for a deteriorating item with price-dependent demand and special sale. Int. J. Oper. Res. 2 (2007) 173–187. [CrossRef] [Google Scholar]
  • L.A. San-José, J. Sicilia and J. Garca-Laguna, Analysis of an EOQ inventory model with partial backordering and non-linear unit holding cost. Omega 54 (2015) 147–157. [CrossRef] [Google Scholar]
  • S.S. Sana, Price-sensitive demand for perishable items–an EOQ model. Appl. Math. Comput. 217 (2011) 6248–6259. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Shaikh, L.E. Cárdenas-Barrón, A.K. Bhunia and S. Tiwari, An inventory model of a three parameter weibull distributed deteriorating item with variable demand dependent on price and frequency of advertisement under trade credit. RAIRO-Oper. Res. 53 (2019) 903–916. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A.A. Shaikh, S. Chandra Das, A.K. Bhunia and B. Sarkar, Decision support system for customers during availability of trade credit financing with different pricing situations. RAIRO-Oper. Res. 55 (2021). [Google Scholar]
  • A.A. Shaikh, MdA-A Khan, G.C. Panda and I. Konstantaras, Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging. Int. Trans. Oper. Res. 26 (2019) 1365–1395. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Shaikh, G.C. Panda, S. Sahu and A.K. Das, Economic order quantity model for deteriorating item with preservation technology in time dependent demand with partial backlogging and trade credit. Int. J. Logist. Syst. Manage. 32 (2019) 1–24. [Google Scholar]
  • G. Sridevi, K. Nirupama Devi and K. Srinivasa Rao, Inventory model for deteriorating items with weibull rate of replenishment and selling price dependent demand. Int. J. Oper. Res. 9 (2010) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Taleizadeh, M. Noori-daryan and L.E. Cárdenas-Barrón, Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items. Int. J. Prod. Econ. 159 (2015) 285–295. [Google Scholar]
  • S. Tayal, S. Singh and R. Sharma, An inventory model for deteriorating items with seasonal products and an option of an alternative market. Uncertain Supply Chain Manage. 3 (2015) 69–86. [CrossRef] [Google Scholar]
  • J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment. J. Indust. Manage. Optim. 10 (2014) 1261. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.