Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2305 - 2314
Published online 29 July 2022
  • K.S. Bagga, L.W. Beineke, W.E. Goddard, M.J. Lipman and R.E. Pippert, A survey of integrity. Discret. Appl. Math. 37 (1992) 13–28. [CrossRef] [Google Scholar]
  • R.S. Bhat, S.S. Kamath and S.R. Bhat, A bound on weak domination number using strong (weak) degree concepts in graphs. J. Int. Acad. Phys. Sci. 15 (2011) 303–317. [MathSciNet] [Google Scholar]
  • R. Boutrig and M. Chellali, A note on a relation between the weak and strong domination numbers of a graph. Opusc. Math. 32 (2012) 235–238. [CrossRef] [Google Scholar]
  • G. Chartrand, L. Lesniak and P. Zhang, Textbooks in Mathematics, Graphs & Digraphs. 6th edition. A Chapman & Hall Book (2015). [CrossRef] [Google Scholar]
  • T. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algorithms. 4th edition. The MIT Press (1990). [Google Scholar]
  • M. Cygan, M. Philipczuk and R. Skrekovski, Relation between Randic index and avarage distance of trees. Match Commun. Math. Comput. Chem. 66 (2011) 605–612. [MathSciNet] [Google Scholar]
  • A.R. Desai and D.B. Gangadharappa, Some bounds on strong domination number of a graph. J. Comput. Math. Sci. 2 (2011) 399–580. [Google Scholar]
  • D. Doğan Durgun and B. Lökçü, Strong domination number of some graphs. Celal Bayar Univ. J. Sci. 11 (2015) 89–91. [Google Scholar]
  • D. Doğan Durgun and B. Lökçü, Weak and strong domination in thorn graphs. Asian-Eur. J. Math. 13 (2020) 2050071. [CrossRef] [MathSciNet] [Google Scholar]
  • A.N. Gani and M.B. Ahamed, Strong and weak domination in fuzzy graphs. East Asian Math. J. 23 (2007) 1–8. [Google Scholar]
  • J.W. Grossman, F. Harary and M. Klawe, Generalized ramsey theory for graphs, X: Double stars. Discret. Math. 28 (1979) 247–254. [CrossRef] [Google Scholar]
  • J.H. Hattingh and M.A. Henning, On strong domination in graphs. J. Comb. Math. Comb. Comput. 26 (1998) 73–82. [Google Scholar]
  • J.H. Hattingh and R.C. Laskar, On weak domination in graphs. Ars Comb. 49 (1998) 205–216. [Google Scholar]
  • S.T. Hedetniemi, T.W. Haynes and P.J. Slater, Fundementals of Domination in Graphs. Marcel Dekker, New York (1998). [Google Scholar]
  • S.T. Hedetniemi, T.W. Haynes and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998). [Google Scholar]
  • D. Laiche, I. Bouchemakh and E. Spoena, On the Packing Coloring of Undirected and Oriented Generalized Theta Graphs. Preprint arXiv:1606.01107v2 (2016). [Google Scholar]
  • P. Morin and S. Verdonschot, On the average number of edges in theta graphs. Preprint arXiv:1304.3402v1 (2013). [Google Scholar]
  • D. Rautenbach, The influence of special vertices on strong domination. Discrete Math. 197 (1999) 683–690. [CrossRef] [Google Scholar]
  • D. Rautenbach, Bounds on the strong domination number. Discrete Math. 215 (2000) 201–212. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Rautenbach and V.E. Zverovich, Perfect graphs of strong domination and independent strong domination. Discrete Math. 226 (2001) 297–311. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Sampathkumar and L.P. Latha, Strong weak domination and domination balance in a graph. Discrete Math. 161 (1996) 235–242. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Swaminathan and P. Thangaraju, Strong and weak domination in graphs. Electron. Notes Discrete Math. 15 (2003) 213–215. [CrossRef] [Google Scholar]
  • O. Uğurlu, M.E. Berberler and Z.N. Berberler, Strong weak domination: A mathematical programming strategy. Bull. Int. Math. Virtual Inst. 9 (2019) 513–519. [MathSciNet] [Google Scholar]
  • S.K. Vaidya and R.N. Mehta, Steiner domination number of some wheel related graphs. Int. J. Math. Soft Comput. 5 (2015) 15–19. [CrossRef] [Google Scholar]
  • S.K. Vaidya and S.H. Karkar, Strong domination number of some path related graphs. Int. J. Math. Soft Comput. 7 (2017) 109–116. [CrossRef] [Google Scholar]
  • S.K. Vaidya and S.H. Karkar, Weak domination number of corona graphs. Math. Today 33 (2017) 18–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.