Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Recent developments of operations research and data sciences
Page(s) 2067 - 2092
DOI https://doi.org/10.1051/ro/2022093
Published online 11 July 2022
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for the estimation of technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–441. [CrossRef] [Google Scholar]
  • W.W. Cooper, R.G. Thompson and R.M. Thrall, Introduction: extensions and new developments in DEA. Ann. Oper. Res. 66 (1996) 3–45. [MathSciNet] [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA. Soc. Econ. Planning Sci. 34 (2000) 1–25. [CrossRef] [Google Scholar]
  • W.W. Cooper, H. Deng, B. Gu, S. Li and R.M. Thrall, Using DEA to improve the management of congestion in Chinese industries. Soc. Econ. Planning Sci. 35 (2001) 227–242. [CrossRef] [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, Slacks and congestion: response to a comment by R. Färe and S. Grosskopf. Soc. Econ. Planning Sci. 35 (2001) 205–215. [CrossRef] [Google Scholar]
  • W.W. Cooper, B. Gu and S. Li, Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA. Eur. J. Oper. Res. 132 (2001) 62–74. [CrossRef] [Google Scholar]
  • W.W. Cooper, H. Deng, Z.M. Huang and S.X. Li, A one-model approach to congestion in data envelopment analysis. Soc. Econ. Planning Sci. 36 (2002) 231–238. [CrossRef] [Google Scholar]
  • W.W. Cooper, H. Deng, L.M. Seiford and J. Zhu, Congestion: its identification and management with DEA. In: Handbook of Data Envelopment Analysis, edited by W.W. Cooper, L.M. Seiford and J. Zhu. Kluwer, Boston (2004) 177–201. [CrossRef] [Google Scholar]
  • R. Färe and S. Grosskopf, Measuring congestion in production. Z. Nat. 43 (1983) 257–271. [Google Scholar]
  • R. Färe and S. Grosskopf, Slacks and congestion: a comment. Soc. Econ. Planning Sci. 34 (2000) 27–33. [CrossRef] [Google Scholar]
  • R. Färe, L, Svensson, Congestion of production factors. Econometrica 48 (1980) 1745–1752. [CrossRef] [Google Scholar]
  • R. Färe, S. Grosskopf and C.A.C. Lovell, The Measurement of Efficiency of Production. Kluwer-Nijho Publishing, Boston (1985). [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo and M. Khodabakhshi, Determining assurance interval for a non-Archimedean element in the improving outputs model in DEA. Appl. Math. Comput. 151 (2004) 501–506. [MathSciNet] [Google Scholar]
  • M. Khodabakhshi, M. Asgharian and G.N. Gregoriou, An input-oriented super-efficiency measure in stochastic DEA: evaluating chief executive officers of US public banks and thrifts. Expert Syst. App. 37 (2010) 2092–2097. [CrossRef] [Google Scholar]
  • M. Khoveyni, R. Eslami, M. Khodabakhshi, G.R. Jahanshahloo and F. Hosseinzadeh Lotfi, Recognizing strong and weak congestion slack based in data envelopment analysis. Comput. Ind. Eng. 64 (2013) 731–738. [CrossRef] [Google Scholar]
  • M. Khoveyni, R. Eslami and G. Yang, Negative data in DEA: recognizing congestion and specifying the least and the most congested decision-making units. Comput. Oper. Res. 79 (2017) 39–48. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Mehdiloozad, S.M. Mirdehghan, B.K. Sahoo and I. Roshdi, On the identification of the global reference set in data envelopment analysis. Eur. J. Oper. Res. 214 (2015) 679–688. [Google Scholar]
  • M. Mehdiloozad, Z. Joe and B.K. Sahoo, Identification of congestion in data envelopment analysis under the occurrence of multiple projections: a reliable method capable of dealing with negative data. Eur. J. Oper. Res. 265 (2019) 644–654. [Google Scholar]
  • A.A. Noura, F. Hosseinzadeh Lotfi, G.R. Jahanshahloo, S.F. Rashidi and B.R. Parker, A new method for measuring congestion in DEA. Soc. Econ. Planning Sci. 2010 (2010) 240–246. [CrossRef] [Google Scholar]
  • T. Sueyoshi and K. Sekitani, Measurement of returns to scale using a non-radial DEA model: a range-adjusted measure approach. Eur. J. Oper. Res. 176 (2007) 1918–1946. [CrossRef] [Google Scholar]
  • T. Sueyoshi and K. Sekitani, Data envelopment analysis congestion and returns to scale under an occurrence of multiple optimal projections. Eur. J. Oper. Res. 194 (2009) 592–607. [CrossRef] [Google Scholar]
  • K. Tone and B.K. Sahoo, The degree of scale economies and congestion: a unified DEA approach. Eur. J. Oper. Res. 158 (2004) 755–772. [CrossRef] [Google Scholar]
  • Q.L. Wei and H. Yan, Congestion and returns to scale in DEA. Eur. J. Oper. Res. 153 (2004) 641–660. [CrossRef] [Google Scholar]
  • Q.L. Wei and H. Yan, Weak congestion in output additive DEA. Soc. Econ. Planning Sci. 43 (2009) 40–54. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.