Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2669 - 2700
Published online 18 August 2022
  • R. Amir, Modelling imperfectly appropriable R&D via spillovers. Int. J. Ind. Org. 18 (2000) 1013–1032. [CrossRef] [Google Scholar]
  • N. Arranz and J.C.F.D. Arroyabe, The choice of partners in R&D cooperation: an empirical analysis of Spanish firms. Technovation 28 (2008) 88–100. [CrossRef] [Google Scholar]
  • A. Atasu and L. Van Wassenhove, An operations perspective on product take-back legislation for e-waste: theory, practice, and research needs. Prod. Oper. Manage. 21 (2012) 407–422. [CrossRef] [Google Scholar]
  • A. Atasu, L. Van Wassenhove and M. Sarvary, Efficient takeback legislation. Prod. Oper. Manage. 18 (2009) 243–258. [CrossRef] [Google Scholar]
  • Australian Government, Clean Technology Investment Program. (2013). [Google Scholar]
  • F. Bidault, C. Despres and C. Butler, New product development and early supplier involvement (ESI): the drivers of ESI adoption. Int. J. Technol. Manage. 15 (1998) 49–69. [CrossRef] [Google Scholar]
  • G. Blalock and P.J. Gertler, Welfare gains from foreign direct investment through technology transfer to local suppliers. J. Int. Econ. 74 (2008) 402–421. [CrossRef] [Google Scholar]
  • M.L. Cabon-dhersin, R&D cooperation and collusion: the case of joint labs. Manchester School 76 (2008) 424–435. [CrossRef] [Google Scholar]
  • C. Chai and T. Xiao, Wholesale pricing and evolutionarily stable strategy in duopoly supply chains with social responsibility. J. Syst. Sci. Syst. Eng. 1 (2019) 110–125. [CrossRef] [Google Scholar]
  • J.-Y. Chen, S. Dimitrov and H. Pun, The impact of government subsidy on supply chains’ sustainability innovation. Omega 86 (2019) 42–58. [CrossRef] [Google Scholar]
  • M.C. Cohen, R. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidies for green technology adoption. Manage. Sci. 62 (2016) 1235–1258. [Google Scholar]
  • C. D’Aspremont and A. Jacquemin, Cooperative and noncooperative R&D in duopoly with spillovers. Am. Econ. Rev. 78 (1988) 1133–1137. [Google Scholar]
  • J. Davenport, Technology transfer, knowledge transfer and knowledge exchange in the historical context of innovation theory and practice. In: The Knowledge Exchange. An Interactive Conference. Lancaster University, United Kingdom (2013). [Google Scholar]
  • N. Erkal and D. Piccinin, Cooperative R&D under uncertainty with free entry. Int. J. Ind. Org. 28 (2010) 74–85. [CrossRef] [Google Scholar]
  • B.T. Feld, Draft code of conduct on transfer of technology. World Dev. 2 (1974) 77–82. [CrossRef] [Google Scholar]
  • Y. Fu, Z. Chen and Y. Lan, The impacts of private risk aversion magnitude and moral hazard in R&D project under uncertain environment. Soft Comput. 22 (2018) 5231–5246. [CrossRef] [Google Scholar]
  • Z. Ge and Q. Hu, Collaboration in R&D activities: firm-specific decisions. Eur. J. Oper. Res. 185 (2008) 864–883. [CrossRef] [Google Scholar]
  • Z. Ge, Q. Hu and Y. Xia, Firms’ R&D cooperation behavior in a supply chain. Prod. Oper. Manage. 23 (2014) 599–609. [CrossRef] [Google Scholar]
  • D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int. J. Prod. Econ. 164 (2015) 319–329. [Google Scholar]
  • Government of Canada, (2017). [Google Scholar]
  • W. Huang, W. Zhou, J. Chen and X. Chen, The government’s optimal subsidy scheme under manufacturers’ competition of price and product energy efficiency. Omega 8 (2019) 70–101. [CrossRef] [Google Scholar]
  • S.H. Jung and T. Feng, Government subsidies for green technology development under uncertainty. Eur. J. Oper. Res. 286 (2020) 726–739. [CrossRef] [Google Scholar]
  • M.I. Kamien, E. Muller and I. Zang, Research joint ventures and R&D cartels. Am. Econ. Rev. 82 (1992) 1293–1306. [Google Scholar]
  • M. Kotabe, X. Martin and H. Domoto, Gaining from vertical partnerships: knowledge transfer, relationship duration, and supplier performance improvement in the U.S. and Japanese automotive industries. Strategic Manage. J. 24 (2003) 293–316. [CrossRef] [Google Scholar]
  • D. Krass, A. Ovchinnikov and T. Nedorezov, Environmental taxes and the choice of green technology. Prod. Oper. Manage. 22 (2013) 1035–1055. [Google Scholar]
  • V. Krishnan and C.H. Loch, A retrospective look at production and operations management articles on new product development. Prod. Oper. Manage. 14 (2005) 433–441. [Google Scholar]
  • V. Krishnan and T. Ulrich Karl, Product development decisions: A review of the literature. Manage. Sci. 47 (2001) 1–21. [CrossRef] [Google Scholar]
  • Q. Li, T. Xiao and Y. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns. J. Cleaner Prod. 190 (2018) 303–314. [CrossRef] [Google Scholar]
  • Z. Li, G. Liao, Z. Wang and Z. Huang, Green loan and subsidy for promoting clean production innovation. J. Cleaner Prod. 187 (2018) 421–431. [CrossRef] [Google Scholar]
  • Y. Li, Y. Tong, F. Ye and J. Song, The choice of the government green subsidy scheme: innovation subsidy vs. product subsidy. Int. J. Prod. Res. 58 (2020) 4932–4946. [CrossRef] [Google Scholar]
  • Y. Liu, B. Quan, Q. Xu and J.Y. Forrest, Corporate social responsibility and decision analysis in a supply chain through government subsidy. J. Cleaner Prod. 208 (2019) 436–447. [CrossRef] [Google Scholar]
  • Z. Liu, C. Zhou, J. Liu and X. Zhou, Revelation for green product operation strategy of a retailer under different reliability levels of servicing the market. Comput. Ind. Eng. 160 (2021) 107594. [CrossRef] [Google Scholar]
  • Q. Meng, Y. Wang, Z. Zhang and Y. He, Supply chain green innovation subsidy strategy considering consumer heterogeneity. J. Cleaner Prod. 281 (2021) 125199. [CrossRef] [Google Scholar]
  • O. Ozdemir, M. Denizel and V.D.R.J. Guide, Recovery decisions of a producer in a legislative disposal fee environment. Eur. J. Oper. Res. 216 (2012) 293–300. [CrossRef] [Google Scholar]
  • G. Raz and A. Ovchinnikov, Coordinating pricing and supply of public interest goods using rebates and subsidies. IEEE Trans. Eng. Manage. 62 (2015) 65–79. [CrossRef] [Google Scholar]
  • W.M. Riggs and E. von Hippel, The impact of scientific and commercial values on the sources of scientific instrument innovation. Res. Policy 23 (1994) 459–469. [CrossRef] [Google Scholar]
  • N. Savva and N. Taneri, The role of equity, royalty, and fixed fees in technology licensing to university spin-offs. Manage. Sci. 61 (2014) 1323–1343. [Google Scholar]
  • T. Shibata, Market structure and R&D investment spillovers. Econ. Modell. 43 (2014) 321–329. [CrossRef] [Google Scholar]
  • V.L. Silva da, J.L. Kovaleski and R.N. Pagani, Technology transfer in the supply chain oriented to industry 4.0: a literature review. Technol. Anal. Strategic Manage. 31 (2019) 546–562. [CrossRef] [Google Scholar]
  • L. Srinivasan, Meet the IIT Madras graduate who has built India’s first solar boat ferry. (2016). Retrieved from [Google Scholar]
  • A. Stepanova and A. Tesoriere, R&D with spillovers: monopoly versus noncooperative and cooperative duopoly. Manchester School 79 (2011) 125–144. [CrossRef] [Google Scholar]
  • V.P. Takahashi, Transfer of technological knowledge: a multiple case study in the pharmaceutical industry. Gestao Producao 12 (2005) 255–269. [CrossRef] [Google Scholar]
  • C. Wang, P. Nie, D. Peng and Z. Li, Green insurance subsidy for promoting clean production innovation. J. Cleaner Prod. 148 (2017) 111–117. [CrossRef] [Google Scholar]
  • J. Wei and C. Wang, Improving interaction mechanism of carbon reduction technology innovation between supply chain enterprises and government by means of differential game. J. Cleaner Prod. 296 (2021) 126578. [CrossRef] [Google Scholar]
  • W. Xiao and Y. Xu, The impact of royalty contract revision in a multistage strategic R&D alliance. Manage. Sci. 58 (2012) 2251–2271. [CrossRef] [Google Scholar]
  • Q. Zhang, J. Zhang, G. Zaccour and W. Tang, Strategic technology licensing in a supply chain. Eur. J. Oper. Res. 267 (2018) 162–175. [CrossRef] [Google Scholar]
  • X. Zhou, S. Yang and G. Wang, Impacts of knowledge spillovers and cartelization on cooperative innovation decisions with uncertain technology efficiency. Comput. Ind. Eng. 143 (2020). [Google Scholar]
  • P. Zipkin, The limits of mass customization. Sloan Manage. Rev. 42 (2001) 81–87. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.