Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2139 - 2158
Published online 11 July 2022
  • F.H. Abernathy, J.T. Dunlop, J.H. Hammond and D. Weil, Retailing and supply chains in the information age. Technol. Soc. 22 (2000) 5–31. [CrossRef] [Google Scholar]
  • H. Adobor, Supply chain resilience: a multi-level framework. Int. J. Logistics Res. App. 22 (2019) 533–556. [CrossRef] [Google Scholar]
  • I.R.S. Agostino, W.V. da Silva, C. Pereira da Veiga and A.M. Souza, Forecasting models in the manufacturing processes and operations management: systematic literature review. J. Forecasting 39 (2020) 1043–1056. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Attaran and S. Attaran, Collaborative supply chain management. Bus. Process Manage. J. 13 (2007) 390–404. [CrossRef] [Google Scholar]
  • Y. Aviv, On the benefits of collaborative forecasting partnerships between retailers and manufacturers. Manage. Sci. 53 (2007) 777–794. [CrossRef] [Google Scholar]
  • M. Barratt and A. Oliveira, Exploring the experiences of collaborative planning initiatives. Int. J. Phys. Distrib. Logistics Manage. 31 (2001) 266–289. [CrossRef] [Google Scholar]
  • N. Bicocchi, G. Cabri, F. Mandreoli and M. Mecella, Dynamic digital factories for agile supply chains: an architectural approach. J. Ind. Inf. Integr. 15 (2019) 111–121. [Google Scholar]
  • B. Bilgen and I. Ozkarahan, Strategic tactical and operational production-distribution models: a review. Int. J. Technol. Manage. 28 (2004) 151–171. [CrossRef] [Google Scholar]
  • G. Büyüközkan and Z. Vardaloğlu, Analyzing of CPFR success factors using fuzzy cognitive maps in retail industry. Expert Syst. App. 39 (2012) 10438–10455. [CrossRef] [Google Scholar]
  • H. Chen, Y. Tian, A.E. Ellinger and P.J. Daugherty, Managing logistics outsourcing relationships: an empirical investigation in China. J. Bus. Logistics 31 (2010) 279–299. [CrossRef] [Google Scholar]
  • M. Christopher and U. Jüttner, Developing strategic partnerships in the supply chain: a practitioner perspective. Eur. J. Purchasing Supply Manage. 6 (2000) 117–127. [CrossRef] [Google Scholar]
  • C. Crum and G.E. Palmatier, Demand collaboration: what’s holding us back? Supply Chain Manage. Rev. 8 (2004) 54–61. [Google Scholar]
  • P. Danese, How contextual factors shape CPFR collaborations: a theoretical framework. Supply Chain Forum Int. J. 7 (2006) 16–26. [CrossRef] [Google Scholar]
  • P.J. Daugherty, R.G. Richey, A.S. Roath, S. Min, H. Chen, A.D. Arndt and S.E. Genchev, Is collaboration paying off for firms? Bus. Horizons 49 (2006) 61–70. [CrossRef] [Google Scholar]
  • A. Demiray, D. Akay, S. Tekin and F.E. Boran, A holistic and structured CPFR roadmap with an application between automotive supplier and its aftermarket customer. Int. J. Adv. Manuf. Technol. 91 (2017) 1567–1586. [CrossRef] [Google Scholar]
  • Y. Dong and K. Xu, A supply chain model of vendor managed inventory. Transp. Res. Part E: Logistics Transp. Rev. 38 (2002) 75–95. [CrossRef] [Google Scholar]
  • C. Eksoz, S.A. Mansouri and M. Bourlakis, Collaborative forecasting in the food supply chain: a conceptual framework. Int. J. Prod. Econ. 158 (2014) 120–135. [CrossRef] [Google Scholar]
  • A. Eydi and M. Bakhtiari, A multi-product model for evaluating and selecting two layers of suppliers considering environmental factors. RAIRO: Oper. Res. 51 (2017) 875–902. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R. Figueiredo and J. Eiras, Transporte colaborativo: conceituação, benefcios e práticas. Rev. Tecnol. 13 (2007). [Google Scholar]
  • G. Fliedner, CPFR: an emerging supply chain tool. Ind. Manage. Data Syst. 103 (2003) 14–21. [CrossRef] [Google Scholar]
  • H.P. Fu, Comparing the factors that influence the adoption of CPFR by retailers and suppliers. Int. J. Logistics Manage. 27 (2016) 931–946. [CrossRef] [Google Scholar]
  • H.P. Fu, K.K. Chu, S.W. Lin and C.R. Chen, A study on factors for retailers implementing CPFR – a fuzzy AHP analysis. J. Syst. Sci. Syst. Eng. 19 (2010) 192–209. [CrossRef] [Google Scholar]
  • X. Gan, R. Chang, J. Zuo, T. Wen and G. Zillante, Barriers to the transition towards off-site construction in China: an interpretive structural modeling approach. J. Cleaner Prod. 197 (2018) 8–18. [CrossRef] [Google Scholar]
  • R. Ireland and R. Bruce, CPFR. Supply Chain Manage. Rev. 1 (2000) 80–88. [Google Scholar]
  • M.M.K.M.Y. Jose and L.M. Botella, Trust and IT innovation in asymmetric environments of the supply chain management process. J. Comput. Inf. Syst. 54 (2014) 10–24. [Google Scholar]
  • M. Kamalahmadi and M. Mellat-Parast, Developing a resilient supply chain through supplier flexibility and reliability assessment. Int. J. Prod. Res. 54 (2016) 302–321. [CrossRef] [Google Scholar]
  • K.K. Kim, S.Y. Ryoo and M.D. Jung, Inter-organizational information systems visibility in buyer–supplier relationships: the case of telecommunication equipment component manufacturing industry. Omega 39 (2011) 667–676. [CrossRef] [Google Scholar]
  • H.L. Lee and S. Whang, Information sharing in a supply chain. Int. J. Manuf. Technol. Manage. 1 (2000) 79–93. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Lehoux, S. D’Amours and A. Langevin, A win–win collaboration approach for a two-echelon supply chain: a case study in the pulp and paper industry. Eur. J. Ind. Eng. 4 (2010) 493–514. [CrossRef] [Google Scholar]
  • L. Li, Effects of enterprise technology on supply chain collaboration: analysis of China-linked supply chain. Enterp. Inf. Syst. 6 (2012) 55–77. [CrossRef] [Google Scholar]
  • R.H. Lin and P.Y. Ho, The study of CPFR implementation model in medical SCM of Taiwan. Prod. Planning Control 25 (2014) 260–271. [CrossRef] [Google Scholar]
  • A. Majumdar and S.K. Sinha, Analyzing the barriers of green textile supply chain management in Southeast Asia using interpretive structural modeling. Sustainable Prod. Consumption 17 (2019) 176–187. [CrossRef] [Google Scholar]
  • T.M. McCarthy, D.F. Davis, S.L. Golicic and J.T. Mentzer, The evolution of sales forecasting management: a 20-year longitudinal study of forecasting practices. J. Forecasting 25 (2006) 303–324. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Mohammaddust, S. Rezapour, R.Z. Farahani, M. Mofidfar and A. Hill, Developing lean and responsive supply chains: a robust model for alternative risk mitigation strategies in supply chain designs. Int. J. Prod. Econ. 183 (2017) 632–653. [CrossRef] [Google Scholar]
  • O. Momen, A. Esfahanipour and A. Seifi, Portfolio selection with robust estimators considering behavioral biases in a causal network. RAIRO: Oper. Res. 53 (2019) 577–591. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G. Neubert, Y. Ouzrout and A. Bouras, Collaboration and integration through information technologies in supply chains. Int. J. Technol. Manage. 28 (2004) 259–273. [CrossRef] [Google Scholar]
  • F. Panahifar, C. Heavey, P.J. Byrne and H. Fazlollahtabar, A framework for collaborative planning, forecasting and replenishment (CPFR). J. Enterp. Inf. Manage. 28 (2015) 838–871. [CrossRef] [Google Scholar]
  • F. Panahifar, P.J. Byrne and C. Heavey, A hybrid approach to the study of CPFR implementation enablers. Prod. Planning Control 26 (2015) 1090–1109. [CrossRef] [Google Scholar]
  • S.T. Ponis, S.P. Gayialis, I.P. Tatsiopoulos, N.A. Panayiotou, D.R.I. Stamatiou and A.C. Ntalla, An application of AHP in the development process of a supply chain reference model focusing on demand variability. Oper. Res. 15 (2015) 337–357. [Google Scholar]
  • R. Rajesh, Technological capabilities and supply chain resilience of firms: a relational analysis using Total Interpretive Structural Modeling (TISM). Technol. Forecasting Soc. Change 118 (2017) 161–169. [CrossRef] [Google Scholar]
  • R. Rajesh, Optimal trade-offs in decision-making for sustainability and resilience in manufacturing supply chains. J. Cleaner Prod. 313 (2021) 127596. [CrossRef] [Google Scholar]
  • R. Rajesh, Sustainability performance predictions in supply chains: grey and rough set theoretical approaches. Ann. Oper. Res. 310 (2022) 171–200. [CrossRef] [Google Scholar]
  • R. Rajesh, A novel advanced grey incidence analysis for investigating the level of resilience in supply chains. Ann. Oper. Res. 308 (2022) 414–190. [Google Scholar]
  • R. Rajesh, A.K. Agariya and C. Rajendran, Predicting resilience in retailing using grey theory and moving probability based Markov models. J. Retail. Consumer Ser. 62 (2021) 102599. [CrossRef] [Google Scholar]
  • L.J. Robertson, From societal fragility to sustainable robustness: some tentative technology trajectories. Technol. Soc. 32 (2010) 342–351. [CrossRef] [Google Scholar]
  • M. Sanchez, E. Exposito and J. Aguilar, Autonomic computing in manufacturing process coordination in industry 4.0 context. J. Ind. Inf. Integr. 19 (2020) 100159. [Google Scholar]
  • K. Sari, On the benefits of CPFR and VMI: A comparative simulation study. Int. J. Prod. Econ. 113 (2008) 575–586. [CrossRef] [Google Scholar]
  • T. Skjoett-Larsen, C. Thernøe and C. Andresen, Supply chain collaboration. Int. J. Phys. Distrib. Logistics Manage. 33 (2003) 531–549. [CrossRef] [Google Scholar]
  • S. Sung, Y. Kim and H. Chang, Improving collaboration between large and small-medium enterprises in automobile production. Enterp. Inf. Syst. 12 (2018) 19–35. [CrossRef] [Google Scholar]
  • C.S. Tang, Perspectives in supply chain risk management. Int. J. Prod. Econ. 103 (2006) 451–488. [Google Scholar]
  • M. Waller, M.E. Johnson and T. Davis, Vendor-managed inventory in the retail supply chain. J. Bus. Logistics 20 (1999) 183–204. [Google Scholar]
  • W. Wang, Y. Yuan, N. Archer and J. Guan, Critical factors for CPFR success in the Chinese retail industry. J. Int. Commerce 4 (2005) 23–39. [CrossRef] [Google Scholar]
  • J.M. Whipple and D. Russell, Building supply chain collaboration: a typology of collaborative approaches. Int. J. Logistics Manage. 18 (2007) 174–196. [CrossRef] [Google Scholar]
  • J.M. Whipple, R. Frankel and P.J. Daugherty, Information support for alliances: performance implications. J. Bus. Logistics 23 (2002) 67–82. [CrossRef] [Google Scholar]
  • L. Wu, C.H. Chuang and C.H. Hsu, Information sharing and collaborative behaviors in enabling supply chain performance: a social exchange perspective. Int. J. Prod. Econ. 148 (2014) 122–132. [CrossRef] [Google Scholar]
  • Y. Yao, R. Kohli, S.A. Sherer and J. Cederlund, Learning curves in collaborative planning, forecasting, and replenishment (CPFR) information systems: an empirical analysis from a mobile phone manufacturer. J. Oper. Manage. 31 (2013) 285–297. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.