Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2767 - 2773 | |
DOI | https://doi.org/10.1051/ro/2022085 | |
Published online | 18 August 2022 |
- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Elsevier, New York (1967). [Google Scholar]
- G.B. Ekinci and J.B. Gauci, The super-connectivity of odd graphs and of their kronecker double cover. RAIRO-Oper. Res. 55 (2021) 561–566. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G.B. Ekinci and A. Kirlangiç, Super connectivity of kronecker product of complete bipartite graphs and complete graphs. Disc. Math. 339 (2016) 1950–1953. [CrossRef] [Google Scholar]
- G.B. Ekinci and A. Kirlangiç, The super edge connectivity of Kronecker product graphs. RAIRO-Oper. Res. 52 (2018) 561–566. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Ghozati, A finite automata approach to modeling the cross product of interconnection networks. Math. Compute. Model. 30 (1999) 185–200. [CrossRef] [Google Scholar]
- R. Guji and E. Vumar, A note on the connectivity of kronecker products of graphs. Appl. Math. Lett. 22 (2009) 1360–1363. [CrossRef] [MathSciNet] [Google Scholar]
- L. Guo and X. Guo, Super connectivity of Kronecker products of some graphs. Ars Combin. 123 (2015) 65–73. [MathSciNet] [Google Scholar]
- L. Guo, C. Qin and X. Guo, Super connectivity of kronecker products of graphs. Inf. Process. Lett. 110 (2010) 659–661. [CrossRef] [Google Scholar]
- L. Guo, W. Yang and X. Guo, Super-connectivity of kronecker products of split graphs, powers of cycles, powers of paths and complete graphs. Appl. Math. Lett. 26 (2013) 120–123. [CrossRef] [MathSciNet] [Google Scholar]
- Kh Kamyab, M. Ghasemi and R. Varmazyar, Super connectivity of lexicographic product graphs. Ars Combin. Preprint arXiv:2009.04831[math.GR]. [Google Scholar]
- R. Lammprey and B. Barnes, Products of graphs and applications. Model. Simul. 5 (1974) 1119–1123. [Google Scholar]
- J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos and Z. Ghahramani, Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res. 11 (2010) 985–1042. [MathSciNet] [Google Scholar]
- M. Lü, C. Wu, G.L. Chen and C. Lv, On super connectivity of cartesian product graphs. Networks 52 (2008) 78–87. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ma, G. Liu and J.M. Xu, The super connectivity of augmented cubes. Inf. Process. Lett. 106 (2008) 59–63. [CrossRef] [Google Scholar]
- D.J. Miller, The categorical product of graphs. Can. J. Math. 20 (1968) 1511–1521. [CrossRef] [Google Scholar]
- F. Soliemany, M. Ghasemi and R. Varmazyar, Super connectivity of a family of direct product graphs. Int. J. Comput. Math. Comput. Syst. Theory 7 (2021) 1–5. [Google Scholar]
- P.M. Weichsel, The kronecker product of graphs. Proc. Am. Math. Soc. 13 (1962) 47–52. [CrossRef] [Google Scholar]
- J.M. Xu, Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht (2001). [Google Scholar]
- J.M. Xu, M. Lü, M. Ma and A. Hellwig, Super connectivity of line graphs. Inf. Process. Lett. 94 (2005) 191–195. [CrossRef] [Google Scholar]
- C.S. Yang, J.F. Wang, J.Y. Lee and F.T. Boesch, Graph theoretic reliable analysis for the Boolean n-cube networks. IEEE Trans. Circuits Syst. 35 (1988) 1175–1179. [CrossRef] [Google Scholar]
- C.S. Yang, J.F. Wang, J.Y. Lee and F.T. Boesch, The number of spanning trees of the regular networks. Int. J. Comput. Math. 23 (1988) 185–200. [CrossRef] [Google Scholar]
- J.X. Zhou, Super connectivity of direct product of graphs. Ars Math. Contemp. 8 (2015) 235–244. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.