Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3561 - 3579
Published online 19 October 2022
  • A.B. Arabani and R.Z. Farahani, Facility location dynamics: An overview of classifications and applications. Comput. Ind. Eng. 62 (2012) 408–420. [CrossRef] [Google Scholar]
  • A. Klose and A. Drexl, Facility location models for distribution system design. Eur. J. Oper. Res. 162 (2005) 4–29. [CrossRef] [Google Scholar]
  • Y. Liu, Y. Yuan, J. Shen and W. Gao, Emergency response facility location in transportation networks: a literature review. J. Traffic Transp. Eng. (2021). [Google Scholar]
  • M. Bieniek, A note on the facility location problem with stochastic demands. Omega 55 (2015) 53–60. [CrossRef] [Google Scholar]
  • L.V. Snyder, Facility location under uncertainty: a review. IIE Trans. 38 (2006) 547–564. [CrossRef] [Google Scholar]
  • X. Gao and C. Cui, A note on the warehouse location problem with data contamination. RAIRO: OR 55 (2021) 1113. [CrossRef] [EDP Sciences] [Google Scholar]
  • A.C. Li, L. Nozick, N. Xu and R. Davidson, Shelter location and transportation planning under hurricane conditions. Transp. Res. Part E Logist. Transp. Rev. 48 (2012) 715–729. [CrossRef] [Google Scholar]
  • S. An, N. Cui, Y. Bai, W. Xie, M. Chen and Y. Ouyang, Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing. Transp. Res. Part E Logist. Transp. Rev. 82 (2015) 199–216. [CrossRef] [Google Scholar]
  • R. Halper, S. Raghavan and M. Sahin, Local search heuristics for the mobile facility location problem. Comput. Oper. Res. 62 (2015) 210–223. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ilkhanizadeh, M. Golabi, S. Hesami and H. Rjoub, The Potential Use of Drones for Tourism in Crises: A Facility Location Analysis Perspective. J. Risk Financ. Manag. 13 (2020) 246. [CrossRef] [Google Scholar]
  • S.M. Shavarani, M.G. Nejad, F. Rismanchian and G. Izbirak, Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of Amazon prime air in the city of San Francisco. J. Adv. Manuf. Technol. 95 (2018) 3141–3153. [CrossRef] [Google Scholar]
  • F. Torrent-Fontbona, V. Munoz and B. López, Solving large immobile location–allocation by affinity propagation and simulated annealing. Application to select which sporting event to watch. Expert Syst. Appl. 40 (2013) 4593–4599. [CrossRef] [Google Scholar]
  • S. Zamani, J. Arkat, S.T.A. Niaki and F. Ahmadizar, Locations of congested facilities with interruptible immobile servers. Comput. Ind. Eng. 156 (2021) 107220. [CrossRef] [Google Scholar]
  • S. Basu, M. Sharma and P.S. Ghosh, Metaheuristic applications on discrete facility location problems: a survey. Opsearch 52 (2015) 530–561. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Ulukan and E. Demircioğlu, A survey of discrete facility location problems. Int. J. Ind. Manuf. Eng. 9 (2015) 2487–2492. [Google Scholar]
  • D. Dinler, M.K. Tural and C. Iyigun, Heuristics for a continuous multifacility location problem with demand regions. Comput. Oper. Res. 62 (2015) 237–256. [CrossRef] [MathSciNet] [Google Scholar]
  • I.M. Al-Mudahka, M.S. Al-Jeraiwi and R. M’Hallah, Lower and upper bounds for the continuous single facility location problem in the presence of a forbidden region and travel barrier. RAIRO: OR 55 (2021) 141–165. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Hasanzadeh, B. Alizadeh and F. Baroughi, The cardinality constrained inverse center location problems on tree networks with edge length augmentation. Theor. Comput. Sci. 865 (2021) 12–33. [CrossRef] [Google Scholar]
  • S. Beheshtifar and A. Alimoahmmadi, A multiobjective optimization approach for location-allocation of clinics. Int. Trans. Oper. Res. 22 (2015) 313–328. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Eydi and J. Mohebi, Modeling and solution of maximal covering problem considering gradual coverage with variable radius over multi-periods. RAIRO: OR 52 (2018) 1245–1260. [CrossRef] [EDP Sciences] [Google Scholar]
  • R.Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia and M. Goh, Covering problems in facility location: A review. Comput. Ind. Eng. 62 (2012) 368–407. [CrossRef] [Google Scholar]
  • K. Aardal, P.L. van den Berg, D. Gijswijt and S. Li, Approximation algorithms for hard capacitated k-facility location problems. Eur. J. Oper. Res. 242 (2015) 358–368. [CrossRef] [Google Scholar]
  • Y. Yan, An Improved Ant Colony Optimization Algorithm with Local Search for the Capacitated Facility Location Problem. Ph.D. thesis, New Mexico State University (2021). [Google Scholar]
  • M. Charikar, S. Khuller, D.M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers. SODA 1 (2001) 642–651. [Google Scholar]
  • P. Sinha, Performance of an add-drop-interchange heuristic for the capacitated facility location problem. Int. J. Appl. Manag. Sci. 1 (2009) 388–400. [CrossRef] [Google Scholar]
  • I. Harris, C.L. Mumford and M.M. Naim, A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling. Transp. Res. Part E Logist. Transp. Rev. 66 (2014) 1–22. [CrossRef] [Google Scholar]
  • K. Abbal and Y. Benadada, Bi-level Multi-capacitated Facility location Problem, in 2020 5th International Conference on Logistics Operations Management (GOL). IEEE (2020) 1–5. [Google Scholar]
  • B. Boffey, R. Galvao and L. Espejo, A review of congestion models in the location of facilities with immobile servers. Eur. J. Oper. Res. 178 (2007) 643–662. [CrossRef] [Google Scholar]
  • R. Aboolian, O. Berman and Z. Drezner, The multiple server center location problem. Ann. Oper. Res. 167 (2009) 337–352. [CrossRef] [MathSciNet] [Google Scholar]
  • H.R. Sayarshad and J.Y. Chow, Non-myopic relocation of idle mobilityon- demand vehicles as a dynamic location-allocation-queueing problem. Transp. Res. Part E Logist. Transp. Rev. 106 (2017) 60–77. [CrossRef] [Google Scholar]
  • R. Tavakkoli-Moghaddam, S. Vazifeh-Noshafagh, A.A. Taleizadeh, V. Hajipour and A. Mahmoudi, Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems. Eng. Optim. 49 (2017) 136–160. [CrossRef] [MathSciNet] [Google Scholar]
  • S.M. Shavarani, S. Mosallaeipour, M. Golabi and G. İzbirak, A congested capacitated multi-level fuzzy facility location problem: An efficient drone delivery system. Comput. Oper. Res. 108 (2019) 57–68. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Berman, D. Krass and J. Wang, Locating service facilities to reduce lost demand. IIE Trans. 38 (2006) 933–946. [CrossRef] [Google Scholar]
  • S.H.A. Rahmati, A. Ahmadi, M. Sharifi and A. Chambari, A multiobjective model for facility location–allocation problem with immobile servers within queuing framework. Comput. Ind. Eng. 74 (2014) 1–10. [CrossRef] [Google Scholar]
  • F. Etebari, A column generation algorithm for the choice-based congested location-pricing problem. Comput. Ind. Eng. 130 (2019) 687–698. [CrossRef] [Google Scholar]
  • S.H.R. Pasandideh, S.T.A. Niaki and V. Hajipour, A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms. J. Intell. Manuf. 24 (2013) 331–348. [CrossRef] [Google Scholar]
  • R. Jafari and J. Arkat, Network location problem with stochastic and uniformly distributed demands. Int. J. Eng. 29 (2016) 654–662. [Google Scholar]
  • M. Golabi, S.M. Shavarani and G. Izbirak, An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake. Nat. Hazards 87 (2017) 1545–1565. [CrossRef] [Google Scholar]
  • S.M. Shavarani, M. Golabi and G. Izbirak, A capacitated biobjective location problem with uniformly distributed demands in the UAV-supported delivery operation. Int. Trans. Oper. Res. 28 (2021) 3220–3243. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Golabi, G. Izbirak and J. Arkat, Multiple-server facility location problem with stochastic demands along the network edges. J. Eng. Res. 6 (2018). [Google Scholar]
  • M.J. Hodgson, A flow-capturing location-allocation model. Geogr. Anal. 22 (1990) 270–279. [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability. Freeman San Francisco, 174 (1979). [Google Scholar]
  • M.S. Daskin and K.L. Maass, The p-median problem, in Location Science. Springer (2015) 21–45. [Google Scholar]
  • N. Megiddo, E. Zemel and S.L. Hakimi, The maximum coverage location problem. SIAM J. Alg. Discrete Meth. 4 (1983) 253–261. [CrossRef] [Google Scholar]
  • S. Dantrakul, C. Likasiri and R. Pongvuthithum, Applied p-median and p-center algorithms for facility location problems. Expert Syst. Appl. 41 (2014) 3596–3604. [CrossRef] [Google Scholar]
  • Z.-J.M. Shen, R.L. Zhan and J. Zhang, The reliable facility location problem: Formulations, heuristics, and approximation algorithms. INFORMS J. Comput. 23 (2011) 470–482. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Sinha, Observations on some heuristic methods for the capacitated facility location problem. Opsearch 49 (2012) 86–93. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Wollenweber, A multi-stage facility location problem with staircase costs and splitting of commodities: model, heuristic approach and application. OR Spectr. 30 (2008) 655–673. [CrossRef] [Google Scholar]
  • R. Kissell and J. Poserina, Chapter 4 - Advanced math and statistics, in Optimal Sports Math, Statistics, and Fantasy. Academic Press (2017) 103–135. [CrossRef] [Google Scholar]
  • J.F. Shortle, J.M. Thompson, D. Gross and C.M. Harris, Fundamentals of Queueing Theory. John Wiley & Sons, 399 (2018). [Google Scholar]
  • M. Ehrgott and X. Gandibleux, Multiobjective combinatorial optimization— theory, methodology, and applications, in Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Springer (2003) 369–444. [CrossRef] [Google Scholar]
  • N. Krasnogor and J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9 (2005) 474–488. [CrossRef] [Google Scholar]
  • R. Tavakkoli-Moghaddam, N. Safaei and F. Sassani, A memetic algorithm for the flexible flow line scheduling problem with processor blocking. Comput. Oper. Res. 36 (2009) 402–414. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Moscato and M.G. Norman, A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput. Transp. Appl. 1 (1992) 177–186. [Google Scholar]
  • S. Samanta, A. Choudhury, N. Dey, A. Ashour and V. Balas, Quantuminspired evolutionary algorithm for scaling factor optimization during manifold medical information embedding, in Quantum Inspired Computational Intelligence. Elsevier (2017) 285–326. [CrossRef] [Google Scholar]
  • A.A. Kuehn and M.J. Hamburger, A heuristic program for locating warehouses. Manag. Sci. 9 (1963) 643–666. [CrossRef] [Google Scholar]
  • E. Feldman, F. Lehrer and T. Ray, Warehouse location under continuous economies of scale. Manag. Sci. 12 (1966) 670–684. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.