Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3311 - 3339
Published online 14 September 2022
  • S.R. Abazari, A. Aghsami and M. Rabbani, Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. Soc.-Econ. Planning Sci. 74 (2020) 100933. [Google Scholar]
  • R. Aboolian, T. Cui and Z.J.M. Shen, An efficient approach for solving reliable facility location models. INFORMS J. Comput. 25 (2013) 720–729. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Aghsami, Y. Samimi and A. Aghaei, A novel Markovian queueing-inventory model with imperfect production and inspection processes: a hospital case study. Comput. Ind. Eng. 162 (2021) 107772. [CrossRef] [Google Scholar]
  • A. Aghsami, Y. Samimi and A. Aghaei, An integrated Markovian queueing-inventory model in a single retailer-single supplier problem with imperfect quality and destructive testing acceptance sampling. Adv. Ind. Eng. 55 (2021) 367–401. [Google Scholar]
  • L. Alfandari, Improved approximation of the general soft-capacitated facility location problem. RAIRO: Oper. Res. 41 (2007) 83–93. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Y. An, B. Zeng, Y. Zhang and L. Zhao, Reliable p-median facility location problem: two-stage robust models and algorithms. Transp. Res. Part B: Methodol. 64 (2014) 54–72. [Google Scholar]
  • J. Asl-Najafi, B. Zahiri, A. Bozorgi-Amiri and A. Taheri-Moghaddam, A dynamic closed-loop location-inventory problem under disruption risk. Comput. Ind. Eng. 90 (2015) 414–428. [Google Scholar]
  • A. Azadeh, M. Sheikhalishahi and A. Aghsami, An integrated FTA-DFMEA approach for reliability analysis and product configuration considering warranty cost. Prod. Eng. 9 (2015) 635–646. [CrossRef] [Google Scholar]
  • A. Bakhshi and J. Heydari, An optimal put option contract for a reverse supply chain: case of remanufacturing capacity uncertainty. Ann. Oper. Res. (2021) 1–24. DOI: 10.1007/s10479-021-04050-y. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment. Manage. Sci. 17 (1970) B-141. [CrossRef] [Google Scholar]
  • I.V. Benedyk, S. Peeta, H. Zheng, Y. Guo and A.V. Iyer, Dynamic model for system-level strategic intermodal facility investment planning. Transp. Res. Record 2548 (2016) 24–34. [CrossRef] [Google Scholar]
  • O. Berman, D. Krass and M.B. Menezes, Location and reliability problems on a line: impact of objectives and correlated failures on optimal location patterns. Omega 41 (2013) 766–779. [CrossRef] [Google Scholar]
  • D. Chauhan, A. Unnikrishnan and M. Figliozzi, Maximum coverage capacitated facility location problem with range constrained drones. Transp. Res. Part C: Emerg. Technol. 99 (2019) 1–18. [CrossRef] [Google Scholar]
  • Q. Chen, X. Li and Y. Ouyang, Joint inventory-location problem under the risk of probabilistic facility disruptions. Transp. Res. Part B: Methodol. 45 (2011) 991–1003. [Google Scholar]
  • T. Cui, Y. Ouyang and Z.J.M. Shen, Reliable facility location design under the risk of disruptions. Oper. Res. 58 (2010) 998–1011. [CrossRef] [MathSciNet] [Google Scholar]
  • M.S. Daskin, C.R. Coullard and Z.J.M. Shen, An inventory-location model: formulation, solution algorithm and computational results. Ann. Oper. Res. 110 (2002) 83–106. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Dehghan-Bonari, A. Bakhshi, A. Aghsami and F. Jolai, Green supply chain management through call option contract and revenue-sharing contract to cope with demand uncertainty. Cleaner Logistics Supply Chain 2 (2021) 100010. [CrossRef] [Google Scholar]
  • A.M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and R. Tavakkoli-Moghaddam, Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput. 24 (2020) 14637–14665. [CrossRef] [Google Scholar]
  • M. Gen and R. Cheng, Genetic Algorithm and Engineering Design. John Wiley & Sons, Inc., New York (1997). [Google Scholar]
  • J. Heydari and A. Bakhshi, Contracts between an e-retailer and a third party logistics provider to expand home delivery capacity. Comput. Ind. Eng. 163 (2022) 107763. [CrossRef] [Google Scholar]
  • A. Hiassat, A. Diabat and I. Rahwan, A genetic algorithm approach for location-inventory-routing problem with perishable products. J. Manuf. Syst. 42 (2017) 93–103. [CrossRef] [Google Scholar]
  • M. Inuiguchi and J. Ramık, Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111 (2000) 3–28. [CrossRef] [Google Scholar]
  • S. Jalali, M. Seifbarghy, J. Sadeghi and S. Ahmadi, Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms. Knowl.-Based Syst. 95 (2016) 45–57. [Google Scholar]
  • J. Kratica, D. Tošic, V. Filipović and I. Ljubić, Solving the simple plant location problem by genetic algorithm. RAIRO: Oper. Res. 35 (2001) 127–142. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • X. Li and Y. Ouyang, A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions. Transp. Res. Part B: Methodol. 44 (2010) 535–548. [CrossRef] [Google Scholar]
  • X. Li, Y. Ouyang and F. Peng, A supporting station model for reliable infrastructure location design under interdependent disruptions. Transp. Res. Part E: Logistics Transp. Rev. 60 (2013) 80–93. [CrossRef] [Google Scholar]
  • M.K. Lim, A. Bassamboo, S. Chopra and M.S. Daskin, Facility location decisions with random disruptions and imperfect estimation. Manuf. Serv. Oper. Manage. 15 (2013) 239–249. [CrossRef] [Google Scholar]
  • H. Liu and D.Z. Wang, Locating multiple types of charging facilities for battery electric vehicles. Transp. Res. Part B: Methodol. 103 (2017) 30–55. [CrossRef] [Google Scholar]
  • Y. Liu, E. Dehghani, M.S. Jabalameli, A. Diabat and C.C. Lu, A coordinated location-inventory problem with supply disruptions: a two-phase queuing theory–optimization model approach. Comput. Ind. Eng. 142 (2020) 106326. [CrossRef] [Google Scholar]
  • K. Liu, C. Liu, X. Xiang and Z. Tian, Testing facility location and dynamic capacity planning for pandemics with demand uncertainty. Eur. J. Oper. Res. (2021). DOI: 10.1016/j.ejor.2021.11.028. [Google Scholar]
  • M. Lu, L. Ran and Z.J.M. Shen, Reliable facility location design under uncertain correlated disruptions. Manuf. Serv. Oper. Manage. 17 (2015) 445–455. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Ma, W. Shi, K.F. Yuen, Q. Sun and Y. Guo, Multi-stakeholders’ assessment of bike sharing service quality based on DEMATEL–VIKOR method. Int. J. Logistics Res. App. 22 (2019) 449–472. [CrossRef] [Google Scholar]
  • M. Marufuzzaman and S.D. Ekşioğlu, Designing a reliable and dynamic multimodal transportation network for biofuel supply chains. Transp. Sci. 51 (2017) 494–517. [CrossRef] [Google Scholar]
  • S.S. Moghadam, A. Aghsami and M. Rabbani, A hybrid NSGA-II algorithm for the closed-loop supply chain network design in e-commerce. RAIRO: Oper. Res. 55 (2021) 1643. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Mohammadi, P. Jula and R. Tavakkoli-Moghaddam, Reliable single-allocation hub location problem with disruptions. Transp. Res. Part E: Logistics Transp. Rev. 123 (2019) 90–120. [CrossRef] [Google Scholar]
  • P. Peng, L.V. Snyder, A. Lim and Z. Liu, Reliable logistics networks design with facility disruptions. Transp. Res. Part B: Methodol. 45 (2011) 1190–1211. [CrossRef] [Google Scholar]
  • F. Peng, X. Wang and Y. Ouyang, Approximation of discrete spatial data for continuous facility location design. Integr. Comput.-Aided Eng. 21 (2014) 311–320. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Rezaei, T. Shahedi, A. Aghsami, F. Jolai and H. Feili, Optimizing a bi-objective location-allocation-inventory problem in a dual-channel supply chain network with stochastic demands. RAIRO: Oper. Res. 55 (2021) 3245–3279. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Sabahi and M.M. Parast, Firm innovation and supply chain resilience: a dynamic capability perspective. Int. J. Logistics Res. App. 23 (2020) 254–269. [CrossRef] [Google Scholar]
  • S.A.S. Salari, H. Mahmoudi, A. Aghsami, F. Jolai, S. Jolai and M. Yazdani, Off-site construction three-echelon supply chain management with stochastic constraints: a modelling approach. Buildings 12 (2022) 119. [CrossRef] [Google Scholar]
  • J.A. Santiváñez and H.J. Carlo, Reliable capacitated facility location problem with service levels. EURO J. Transp. Logistics 7 (2018) 315–341. [CrossRef] [Google Scholar]
  • Z.J.M. Shen, R.L. Zhan and J. Zhang, The reliable facility location problem: formulations, heuristics, and approximation algorithms. INFORMS J. Comput. 23 (2011) 470–482. [CrossRef] [MathSciNet] [Google Scholar]
  • Z.-J.M. Shen, C.R. Coullard and M.S. Daskin, A joint location-inventory model. Transp. Sci. 37 (2003) 40–55. [CrossRef] [Google Scholar]
  • D. Shishebori, M.S. Jabalameli and A. Jabbarzadeh, Facility location-network design problem: reliability and investment budget constraint. J. Urban Planning Dev. 140 (2014) 04014005. [CrossRef] [Google Scholar]
  • L.V. Snyder and M.S. Daskin, Reliability models for facility location: the expected failure cost case. Transp. Sci. 39 (2005) 400–416. [Google Scholar]
  • L.V. Snyder, Z. Atan, P. Peng, Y. Rong, A.J. Schmitt and B. Sinsoysal, OR/MS models for supply chain disruptions: a review. IIE Trans. 48 (2016) 89–109. [Google Scholar]
  • O. Tellez, L. Daguet, F. Lehuédé, T. Monteiro, G. Osorio Montoya, O. Péton and S. Vercraene, A stakeholder oriented approach to the optimization of transports of people with disabilities. In: Supply Chain Forum: An International Journal. Vol. 21. Taylor & Francis (2020) 93–102. [CrossRef] [Google Scholar]
  • T.H. Tran, J.R. O’Hanley and M.P. Scaparra, Reliable hub network design: formulation and solution techniques. Transp. Sci. 51 (2017) 358–375. [CrossRef] [Google Scholar]
  • V. Verter, Uncapacitated and capacitated facility location problems. In: Foundations of Location Analysis. Springer, New York, NY (2011) 25–37. [CrossRef] [Google Scholar]
  • M. Vujošević, D. Petrović and R. Petrović, EOQ formula when inventory cost is fuzzy. Int. J. Prod. Econ. 45 (1996) 499–504. [Google Scholar]
  • W. Xie, Y. Ouyang and S.C. Wong, Reliable location-routing design under probabilistic facility disruptions. Transp. Sci. 50 (2016) 1128–1138. [CrossRef] [Google Scholar]
  • S. Xie, K. An and Y. Ouyang, Planning facility location under generally correlated facility disruptions: use of supporting stations and quasi-probabilities. Transp. Res. Part B: Methodol. 122 (2019) 115–139. [CrossRef] [Google Scholar]
  • L. Yun, Y. Qin, H. Fan, C. Ji, X. Li and L. Jia, A reliability model for facility location design under imperfect information. Transp. Res. Part B: Methodol. 81 (2015) 596–615. [CrossRef] [Google Scholar]
  • L. Yun, X. Wang, H. Fan and X. Li, A reliable facility location design model with site-dependent disruption in the imperfect information context. PloS One 12 (2017) e0177104. [CrossRef] [PubMed] [Google Scholar]
  • L. Yun, H. Fan and X. Li, Reliable facility location design with round-trip transportation under imperfect information part II: a continuous model. Transp. Res. Part B: Methodol. 124 (2019) 44–59. [CrossRef] [Google Scholar]
  • L. Yun, X. Wang, H. Fan and X. Li, Reliable facility location design with round-trip transportation under imperfect information Part I: a discrete model. Transp. Res. Part E: Logistics Transp. Rev. 133 (2020) 101825. [CrossRef] [Google Scholar]
  • Y. Zhang, L.V. Snyder, M. Qi and L. Miao, A heterogeneous reliable location model with risk pooling under supply disruptions. Transp. Res. Part B: Methodol. 83 (2016) 151–178. [CrossRef] [Google Scholar]
  • H. Zheng, X. He, Y. Li and S. Peeta, Traffic equilibrium and charging facility locations for electric vehicles. Networks Spatial Econ. 17 (2017) 435–457. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Zhou and Z. Zhang, Customer satisfaction of bicycle sharing: studying perceived service quality with SEM model. Int. J. Logistics Res. App. 22 (2019) 437–448. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.