Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3689 - 3709
Published online 31 October 2022
  • L. Afraites, A new coupled complex boundary method (ccbm) for an inverse obstacle problem. Discrete Contin. Dyn. Syst.-S 15 (2022) 23. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Afraites and A. Atlas, Parameters identification in the mathematical model of immune competition cells. J. Inverse Ill-Posed Probl. 23 (2015) 323–337. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete Contin. Dyn. Syst.-B 8 (2007) 389. [Google Scholar]
  • L. Afraites, M. Dambrine and D. Kateb, Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim. 28 (2007) 519–551. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Afraites, C. Masnaoui and M. Nachaoui, Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete Contin. Dyn. Syst.-S 15 (2022) 1. [CrossRef] [MathSciNet] [Google Scholar]
  • C.J.S. Alves, R. Mamud, N.F.M. Martins and N.C. Roberty, On inverse problems for characteristic sources in helmholtz equations. Math. Probl. Eng. 2017 (2017). [Google Scholar]
  • H. Azegami and K. Takeuchi, A smoothing method for shape optimization: traction method using the robin condition. Int. J. Comput. Methods 3 (2006) 21–33. [CrossRef] [Google Scholar]
  • F. Caubet, M. Dambrine, D. Kateb and C.Z. Timimoun, A kohn-vogelius formulation to detect an obstacle immersed in a fluid. Inverse Probl. Imaging 7 (2013) 123. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Cheng, R. Gong, W. Han and X. Zheng, A novel coupled complex boundary method for solving inverse source problems. Inverse Probl. 30 (2014) 055002. [CrossRef] [Google Scholar]
  • P.J. Daniell, Lectures on cauchy’s problem in linear partial differential equations. Math. Gaz. 12 (1924) 173–174. [CrossRef] [Google Scholar]
  • R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications, Vol. 3. Springer Science & Business Media (1999). [Google Scholar]
  • M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. SIAM (2011). [Google Scholar]
  • A. El Badia and T.H. Duong, Some remarks on the problem of source identification from boundary measurements. Inverse Probl. 14 (1998) 883. [CrossRef] [Google Scholar]
  • A. El Badia and T. Nara, An inverse source problem for helmholtz’s equation from the cauchy data with a single wave number. Inverse Probl. 27 (2011) 105001. [CrossRef] [Google Scholar]
  • K. Eppler and H. Harbrecht, A regularized newton method in electrical impedance tomography using shape hessian information. Control Cybern. 34 (2005) 203. [Google Scholar]
  • M. Giacomini, O. Pantz and K. Trabelsi, Certified descent algorithm for shape optimization driven by fully-computable a posteriori error estimators. ESAIM: Control Optim. Calc. Var. 23 (2017) 977–1001. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R. Gong, X. Cheng and W. Han, A coupled complex boundary method for an inverse conductivity problem with one measurement. Appl. Anal. 96 (2017) 869–885. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Haslinger and R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, 2003. [CrossRef] [Google Scholar]
  • F. Hecht, Finite Element Library Freefem++. [Google Scholar]
  • M. Hrizi and M. Hassine, One-iteration reconstruction algorithm for geometric inverse source problem. J. Elliptic Parabol. Equ. 4 (2018) 177–205. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Kress and W. Rundell, A nonlinear integral equation and an iterative algorithm for an inverse source problem. J. Integral Equ. Appl. 27 (2015) 179–198. [CrossRef] [Google Scholar]
  • V. Michel and A.S. Fokas, A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl. 24 (2008) 045019. [CrossRef] [Google Scholar]
  • F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Rapport du LA 189 (1976) 76015. [Google Scholar]
  • A. Oulmelk, L. Afraites, A. Hadri and M. Nachaoui, An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals. Appl. Numer. Math. 181 (2022) 647–664. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pierre and A. Henrot, Shape Variation and Optimization: A Geometrical Analysis (2018). [Google Scholar]
  • J.F.T. Rabago, On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems. Preprint arXiv:2205.12620 (2022). [Google Scholar]
  • N.C. Roberty and C.J.S. Alves, On the identification of star-shape sources from boundary measurements using a reciprocity functional. Inverse Probl. Sci. Eng. 17 (2009) 187–202. [CrossRef] [MathSciNet] [Google Scholar]
  • J.-P. Zolésio and M.C. Delfour, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.