Open Access
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3393 - 3404
Published online 26 September 2022
  • M. Baou and A.R. Mahjoub, Steiner 2-edge connected subgraph polytopes on series-parallel graphs. SIAM J. Discrete Math. 10 (1997) 505–514. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Barahona and A.R. Mahjoub, On two-connected subgraph polytopes. Discrete Math. 147 (1995) 19–34. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Bordini, F. Protti, T.G. da Silva and G.F. de Sousa Filho, New algorithms for the minimum coloring cut problem. Int. Trans. Oper. Res. 26 (2019) 1868–1883. [CrossRef] [MathSciNet] [Google Scholar]
  • S.C. Boyd and T. Hao, An integer polytope related to the design of survivable communication networks. SIAM J. Discrete Math. 6 (1993) 612–630. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Broersma and X. Li, Spanning trees with many or few colors in edge-colored graphs. Discuss. Math. Graph Theory 17 (1997) 259–269. [CrossRef] [MathSciNet] [Google Scholar]
  • M.E. Captivo, J.C. Clmaco and M.M. Pascoal, A mixed integer linear formulation for the minimum label spanning tree problem. Comput. Oper. Res. 36 (2009) 3082–3085. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Cerulli, A. Fink, M. Gentili and S. Voß, Metaheuristics comparison for the minimum labelling spanning tree problem. In: The Next Wave in Computing, Optimization, and Decision Technologies. Springer (2005) 93–106. [CrossRef] [Google Scholar]
  • R. Cerulli, A. Fink, M. Gentili and S. Voß, Extensions of the minimum labelling spanning tree problem. J. Telecommun. Inf. Technol. (2006) 39–45. [Google Scholar]
  • R.-S. Chang and L. Shing-Jiuan, The minimum labeling spanning trees. Inf. Process. Lett. 63 (1997) 277–282. [CrossRef] [Google Scholar]
  • S. Consoli, J.A.M. Pérez and N. Mladenović, Intelligent optimization for the minimum labelling spanning tree problem. In: International Conference on Learning and Intelligent Optimization. Springer (2013) 19–23. [CrossRef] [Google Scholar]
  • C.R. Coullard, A. Rais, R.L. Rardin and D.K. Wagner, Linear-time algorithms for the 2-connected steiner subgraph problem on special classes of graphs. Networks 23 (1993) 195–206. [CrossRef] [MathSciNet] [Google Scholar]
  • C.R. Coullard, A. Rais, R.L. Rardin and D.K. Wagner, The dominant of the 2-connected-steiner-subgraph polytope for w4-free graphs. Discrete Appl. Math. 66 (1996) 33–43. [CrossRef] [MathSciNet] [Google Scholar]
  • T.G. Da Silva, The Minimum Labeling Spanning Tree and Related Problems. Avignon University, France (2018). [Google Scholar]
  • T.G. Da Silva, S. Gueye, P. Michelon, L.S. Ochi and L.D.A.F. Cabral, A polyhedral approach to the generalized minimum labeling spanning tree problem. EURO J. Comput. Optim. 7 (2019) 47–77. [CrossRef] [MathSciNet] [Google Scholar]
  • T.G. Da Silva, L.S. Ochi, P. Michelon, S. Gueye and L.A. Cabral, Solving the minimum labeling global cut problem by mathematical programming. Preprint arXiv:1903.04319 (2019). [Google Scholar]
  • T.G. Da Silva, E. Queiroga, L.S. Ochi, L.D.A.F. Cabral, S. Gueye and P. Michelon, A hybrid metaheuristic for the minimum labeling spanning tree problem. Eur. J. Oper. Res. 274 (2019) 22–34. [CrossRef] [Google Scholar]
  • T. Dutta, L.S. Heath, V.A. Kumar and M.V. Marathe, Labeled cuts in graphs. Theor. Comput. Sci. 648 (2016) 34–39. [CrossRef] [Google Scholar]
  • L. Faria, S. Klein, I. Sau, U.S. Souza and R. Sucupira, Maximum cuts in edge-colored graphs. Discrete Appl. Math. 281 (2020) 229–234. [CrossRef] [MathSciNet] [Google Scholar]
  • L.R. Ford and D.R. Fulkerson, Maximal flow through a network. Can. J. Math. 8 (1956) 399–404. [CrossRef] [Google Scholar]
  • A.V. Goldberg and R.E. Tarjan, A new approach to the maximum-flow problem. J. Assoc. Comput. Mach. 35 (1988) 921–940. [Google Scholar]
  • R.E. Gomory and T.C. Hu, Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9 (1961) 551–570. [CrossRef] [Google Scholar]
  • D. Granata, R. Cerulli, M.G. Scutella and A. Raiconi, Maximum flow problems and an np-complete variant on edge-labeled graphs. Handb. Comb. Optim. (2013) 1913–1948. [Google Scholar]
  • M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks. Handb. Oper. Res. Manage. Sci. 7 (1995) 617–672. [Google Scholar]
  • D. Gusfield, Very simple algorithms and programs for all pairs network flow analysis. Technical report, Computer Science Division, University of California, Davis, (1987). [Google Scholar]
  • D. Gusfield, Very simple methods for all pairs network flow analysis. SIAM J. Comput. 19 (1990) 143–155. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Jozefowiez, G. Laporte and F. Semet, A branch-and-cut algorithm for the minimum labeling hamiltonian cycle problem and two variants. Comput. Oper. Res. 3 (2011) 1534–1542. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Kerivin and A.R. Mahjoub, Design of survivable networks: a survey. Networks: Int. J. 46 (2005) 1–21. [Google Scholar]
  • A.R. Mahjoub, Two-edge connected spanning subgraphs and polyhedra. Math. Program. 64 (1994) 199–208. [CrossRef] [Google Scholar]
  • J. Perez and S. Consoli, On the minimum labelling spanning bi-connected subgraph problem. Preprint arXiv:1505.01742 (2015). [Google Scholar]
  • R. Vaisman, Finding minimum label spanning trees using cross-entropy method. Networks 79 (2022) 220–235. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Wen, H. Broersma, Z.-B. Zhang and X. Zhang, On the complexity of edge-colored subgraph partitioning problems in network optimization. Discrete Math. Theor. Comput. Sci. 17 (2016). DOI: 10.46298/dmtcs.2159. [Google Scholar]
  • Y. Xiong, B. Golden and E. Wasil, The colorful traveling salesman problem. In: Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies. Springer (2007) 115–123. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.