Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 3991 - 4022
DOI https://doi.org/10.1051/ro/2022164
Published online 25 November 2022
  • G. Ahmadi, S.A. Torabi and R. Tavakkoli-Moghaddam, A bi-objective location-inventory model with capacitated transportation and lateral transshipments. Int. J. Prod. Res. 54 (2016) 2035–2056. [CrossRef] [Google Scholar]
  • M. Akbarpour, S.A. Torabi and A. Ghavamifar, Designing an integrated pharmaceutical relief chain network under demand uncertainty. Transp. Res. Part E Logist. Transp. Rev. 136 (2020) 101867. [CrossRef] [Google Scholar]
  • I. Ali, S. Gupta and A. Ahmed, Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment. Int. J. Syst. Assur. Eng. Manag. 10 (2019) 173–189. [CrossRef] [Google Scholar]
  • E.M. Alvarez, M.C. Van der Heiden, I.M.H. Vliegen and W.H.M. Zijm, Service differentiation through selective lateral transshipments. Eur. J. Oper. Res. 237 (2014) 824–835. [CrossRef] [Google Scholar]
  • S.H. Amin and F. Baki, A facility location model for global closed-loop supply chain network design. App. Math. Model. 41 (2017) 316–330. [CrossRef] [Google Scholar]
  • A. Arasteh, Supply chain management under uncertainty with the combination of fuzzy multi-objective planning and real options approaches. Soft Comput. 24 (2021) 5177–5198. [Google Scholar]
  • M.G. Avci and H. Selim, A multi-objective simulation-based optimization approach for inventory replenishment problem with premium freights in convergent supply chains. Omega 80 (2018) 153–165. [CrossRef] [Google Scholar]
  • S. Bandyopadhyay and R. Bhattacharya, Solving a tri-objective supply chain problem with modified NSGA-II algorithm. J. Manuf. Syst. 33 (2014) 41–50. [CrossRef] [Google Scholar]
  • M. Bashiri, H. Badri and J. Talebi, A new approach to tactical and strategic planning in production–distribution networks. App. Math. Model. 36 (2012) 1703–1717. [CrossRef] [Google Scholar]
  • A.K. Bera, D.K. Jana, D. Banerjee and T. Nandy, A two-phase multi-criteria fuzzy group decision making approach for supplier evaluation and order allocation considering multi-objective, multi-product and multi-period. Ann. Data Sci. 8 (2020) 577–601. [Google Scholar]
  • B. Bilgen, Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Syst. App. 37 (2010) 4488–4495. [CrossRef] [Google Scholar]
  • C. Bilir, S.O. Ekici and F. Ulengin, An integrated multi-objective supply chain network and competitive facility location model, Comput. Ind. Eng. 108 (2017) 136–148. [CrossRef] [Google Scholar]
  • H.L. Chan, X. Wei, S. Guo and W.H. Leung, Corporate social responsibility (CSR) in fashion supply chains: a multi-methodological study. Transp. Res. Part E Logist. Transp. Rev. 142 (2020) 102063. [CrossRef] [Google Scholar]
  • V. Charles, S. Gupta and I. Ali, A fuzzy goal programming approach for solving multi-objective supply chain network problems with pareto-distributed random variables. Int. J. Uncertainty Fuzziness Knowlege Based Syst. 27 (2019) 559–593. [CrossRef] [Google Scholar]
  • S.B. Choi, B.K. Dey, S.J. Kim and B. Sarkar, Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time. RAIRO: Oper. Res. 56 (2022) 1623–1653. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • F. Delfani, H. Samanipour, H. Beiki, A.V. Yumashev and E.M. Akhmetshin, A robust fuzzy optimisation for a multi-objective pharmaceutical supply chain network design problem considering reliability and delivery time. Int. J. Syst. Sci. Oper. Logist. 9 (2020) 155–179. [Google Scholar]
  • M. Daz-Madroñero, D. Peidro and J. Mula, A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. App. Math. Model. 38 (2014) 5705–5725. [CrossRef] [Google Scholar]
  • H. Ensafian and S. Yaghoubi, Robust optimization model for integrated procurement, production and distribution in platelet supply chain. Transp. Res. Part E Logist. Transp. Rev. 103 (2017) 32–55. [CrossRef] [Google Scholar]
  • M. Fattahi, K. Govindan and E. Keyvanshokooh, A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Comput. Operat. Res. 100 (2018) 314–332. [CrossRef] [Google Scholar]
  • A. Garai and B. Sarkar, Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel. J. Clean. Prod. 334 (2022) 129977. [CrossRef] [Google Scholar]
  • B. Gaudenzi and M. Christopher, Achieving supply chain “Leagility” through a project management orientation. Int. J. Logist. Res. App. 19 (2016) 3–18. [CrossRef] [Google Scholar]
  • A.L. Guiffrida and M.Y. Jaber, Managerial and economic impacts of reducing delivery variance in the supply chain. App. Math. Model. 32 (2008) 2149–2161. [CrossRef] [Google Scholar]
  • S. Gupta, I. Ali and A. Ahmed, Efficient fuzzy goal programming model for multi-objective production distribution problem. Int. J. App. Comput. Math. 4 (2018) 76. [CrossRef] [Google Scholar]
  • S. Gupta, H. Garg and S. Chaudhary, Parameter estimation and optimization of multi-objective capacitated stochastic transportation problem for gamma distribution. Complex Intell. Syst. 6 (2020) 651–667. [CrossRef] [Google Scholar]
  • S. Gupta, S. Chaudhary, P. Chatterjee and M. Yazdani, An efficient stochastic programming approach for solving integrated multi-objective transportation and inventory management problem using goodness of fit. Kybernetes 51 (2021) 768–803. [Google Scholar]
  • D. Han, Y. Yang, D. Wang, T.C.E. Cheng and Y. Yin, Integrated production, inventory, and outbound distribution operations with fixed departure times in a three-stage supply chain. Transp. Res. Part E Logist. Transp. Rev. 125 (2019) 334–347. [CrossRef] [Google Scholar]
  • M. Kadziński, T. Tervonen, M.K. Tomczyk and R. Dekker, Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega 68 (2017) 168–184. [CrossRef] [Google Scholar]
  • A.S.H. Kugele, W. Ahmed and B. Sarkar, Geometric programming solution of second degree difficulty for carbon ejection controlled reliable smart production system. RAIRO: OR 56 (2022) 1013–1029. [CrossRef] [EDP Sciences] [Google Scholar]
  • S. Kumar, M. Sigroha, K. Kumar and B. Sarkar, Manufacturing/remanufacturing based supply chain management under advertisements and carbon emission process. RAIRO: OR 56 (2022) 831–851. [CrossRef] [EDP Sciences] [Google Scholar]
  • T.F. Liang, Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Comput. Ind. Eng. 55 (2008) 676–694. [CrossRef] [Google Scholar]
  • S. Liu, L.G. Papageorgiou, Multi-objective optimization of production, distribution and capacity planning of global supply chains in the process industry. Omega 41 (2013) 369–382. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, M.S. Mahapatra, B. Sarkar and S.K. Majumder, Benefit of preservation technology with promotion and time-dependent deterioration under fuzzy learning. Expert. Syst. App. 201 (2022) 117169. [CrossRef] [Google Scholar]
  • M. Mahmoodi, A new multi-objective model of agile supply chain network design considering transportation limits. Prod. Manuf. Res. 7 (2019) 1–22. [Google Scholar]
  • J.T. Margolis, K.M. Sullivan, S.J. Mason and M. Magagnotti, A multi-objective optimization model for designing resilient supply chain networks. Int. J. Prod. Econ. 204 (2018) 174–185. [Google Scholar]
  • S. Min, Z.G. Zacharia and C.D. Smith, Defining supply chain management: in the past, present, and future. J. Bus. Logist. 40 (2019) 44–55. [CrossRef] [MathSciNet] [Google Scholar]
  • A.M. Mohammed and S.O. Duffuaa, A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks. Expert. Syst. App. 140 (2020) 112808. [CrossRef] [Google Scholar]
  • I. Moon, W.Y. Yun and B. Sarkar, Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Eur. J. Ind. Eng. 16 (2022) 371–397. [CrossRef] [Google Scholar]
  • K.P. Nurjanni, M.S. Carvalho and L. Costa, Green supply chain design: a mathematical modeling approach based on a multi-objective optimization model. Int. J. Prod. Econ. 183 (2017) 421–432. [Google Scholar]
  • D. Peidro, J. Mula, M.M.E. Alemany and F.C. Lario, Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. Int. J. Prod. Res. 50 (2012) 3011–3020. [CrossRef] [Google Scholar]
  • E.H. Sabri and B.M. Beamon, A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28 (2000) 581–598. [CrossRef] [Google Scholar]
  • J. Sadeghi, S.M. Mousavi, S.T.A. Niaki and S. Sadeghi, Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transp. Res. Part E Logist. Transp. Rev. 70 (2014) 274–292. [CrossRef] [Google Scholar]
  • A.N. Sadigh, H. Fallah and N. Nahavandi, A multi-objective supply chain model integrated with location of distribution centers and supplier selection decisions. Int. J. Adv. Manuf. Tech. 69 (2013) 225–235. [CrossRef] [Google Scholar]
  • B. Sarkar and S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand. Expert. Syst. App. 202 (2022) 117154. [CrossRef] [Google Scholar]
  • A. Sarkar, R. Guchhait and B. Sarkar, Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. Int. J. Fuzzy Syst. 24 (2022) 2318–2332. [CrossRef] [Google Scholar]
  • B. Sarkar, J. Joo, Y. Kim, H. Park and M. Sarkar, Controlling defective items in a complex multi-phase manufacturing system. RAIRO: OR 56 (2022) 871–889. [CrossRef] [EDP Sciences] [Google Scholar]
  • B. Sarkar, M. Ullah and M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 332 (2022) 129813. [CrossRef] [Google Scholar]
  • K. Sarrafha, S.H.A. Rahmati, S.T.A. Niaki and A. Zaretalab, A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: a new tuned MOEA. Comput. Oper. Res. 54 (2015) 35–51. [Google Scholar]
  • A. Seidscher and S. Minner, A Semi-Markov decision problem for proactive and reactive transshipments between multiple warehouses. Eur. J. Oper. Res. 230 (2013) 42–52. [CrossRef] [Google Scholar]
  • S.K. Singh and M. Goh, Multi-objective mixed integer programming and an application in a pharmaceutical supply chain. Int. J. Prod. Res. 57 (2019) 1214–1237. [Google Scholar]
  • F.J. Tapia-Ubeda, P.A. Miranda, I. Roda, M. Macchi and O. Durán, Modelling and solving spare parts supply chain network design problems. Int. J. Prod. Res. 58 (2020) 5299–5319. [CrossRef] [Google Scholar]
  • S.A. Torabi, E. Hassini and M. Jeihoonian, Fulfillment source allocation, inventory transshipment, and customer order transfer in e-tailing. Transp. Res. Part E Logist. Transp. Rev. 79 (2015) 128–144. [CrossRef] [Google Scholar]
  • S.C. Tsai and S.T. Chen, A simulation-based multi-objective optimization framework: a case study on inventory management. Omega 70 (2017) 148–159. [CrossRef] [Google Scholar]
  • U.R. Tuzkaya and S. Önüt, A holonic approach based integration methodology for transportation and warehousing functions of the supply network. Comput. Indust. Eng. 56 (2009) 708–723. [CrossRef] [Google Scholar]
  • S. Validi, A. Bhattacharya and P.J. Byrne, A case analysis of a sustainable food supply chain distribution system – A multi-objective approach. Int. J. Prod. Econ. 152 (2014) 71–87. [CrossRef] [Google Scholar]
  • K.J. Wang, B. Makond and S.Y. Liu, Location and allocation decisions in a two-echelon supply chain with stochastic demand – A genetic-algorithm based solution. Expert. Syst. App. 8 (2011) 6125–6131. [CrossRef] [Google Scholar]
  • J. Xu, Q. Liu and R. Wang, A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Inf. Sci. 178 (2008) 2022–2043. [CrossRef] [Google Scholar]
  • D. Yadav, R. Singh, A. Kumar and B. Sarkar, Reduction of pollution through sustainable and flexible production by controlling by-products. J. Environ. Inform. 40 (2022) 106–124. [Google Scholar]
  • S. Zandkarimkhani, H. Mina, M. Biuki and K. Govindan, A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Ann. Oper. Res. 295 (2020) 425–452. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Zhang, C.K.M. Lee, K. Wu and K.L. Choy, Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert. Syst. App. 65 (2016) 87–99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.