Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
|
|
---|---|---|
Page(s) | 4281 - 4301 | |
DOI | https://doi.org/10.1051/ro/2022198 | |
Published online | 21 December 2022 |
- H. Aissi, C. Bazgan and D. Vanderpooten, Complexity of the min–max and min–max regret assignment problems. Oper. Res. Lett. 33 (2005) 634–640. [CrossRef] [MathSciNet] [Google Scholar]
- H. Aissi, C. Bazgan and D. Vanderpooten, Complexity of the min-max (regret) versions of cut problems, in International Symposium on Algorithms and Computation. Springer (2005) 789–798. [Google Scholar]
- H. Aissi, C. Bazgan and D. Vanderpooten, Min-max and min-max regret versions of combinatorial optimization problems: A survey. Eur. J. Oper. Res. 197 (2009) 427–438. [CrossRef] [Google Scholar]
- R. Anand, D. Aggarwal and V. Kumar, A comparative analysis of optimization solvers. J. Stat. Manag. Syst. 20 (2017) 623–635. [Google Scholar]
- L. Assunção, T.F. de Noronha, A.C. Santos and R.C. de Andrade, A linear programming based heuristic for robust optimization problems: a case study on solving the restricted robust shortest path problem, in Matheuristics 2014–5th International Workshop on Model-Based Metaheuristics. Hambourg, Alemagne (2014) 8. [Google Scholar]
- L. Assunção, A.C. Santos, T.F. Noronha and R. Andrade, On the finite optimal convergence of logic-based benders’ decomposition in solving 0–1 min-max regret optimization problems with interval costs, in International Symposium on Combinatorial Optimization. Springer (2016) 1–12. [Google Scholar]
- L. Assunção, T.F. Noronha, A.C. Santos and R. Andrade, A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs. Comput. Oper. Res. 81 (2017) 51–66. [CrossRef] [MathSciNet] [Google Scholar]
- I. Averbakh and V. Lebedev, Interval data minmax regret network optimization problems. Discrete Appl. Math. 138 (2004) 289–301. [CrossRef] [MathSciNet] [Google Scholar]
- I. Averbakh and V. Lebedev, On the complexity of minmax regret linear programming. Eur. J. Oper. Res. 160 (2005) 227–231. [CrossRef] [Google Scholar]
- I. Averbakh, On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. 90 (2001) 263–272. [CrossRef] [MathSciNet] [Google Scholar]
- I. Averbakh, Complexity of robust single facility location problems on networks with uncertain edge lengths. Discrete Appl. Math. 127 (2003) 505–522. [CrossRef] [MathSciNet] [Google Scholar]
- E. Balas and A. Ho, Set covering algorithms using cutting planes, heuristics, and subgradient optimization: a computational study, in Combinatorial Optimization. Springer (1980) 37–60. [CrossRef] [Google Scholar]
- J.E. Beasley, Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41 (1990) 1069–1072. [CrossRef] [Google Scholar]
- J.F. Benders, Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4 (1962) 238–252. [Google Scholar]
- A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88 (2000) 411–424. [Google Scholar]
- D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
- E. Buluc, M. Peker, B.Y. Kara and M. Dora, Covering vehicle routing problem: application for mobile child friendly spaces for refugees. OR Spectr. (2021) 1–24. [Google Scholar]
- I.A. Carvalho, On the statistical evaluation of algorithmic’s computational experimentation with infeasible solutions. Inf. Process. Lett. 143 (2019) 24–27. [CrossRef] [Google Scholar]
- I.A. Carvalho, T.F. Noronha, C. Duhamel and L.F.M. Vieira, A scenario based heuristic for the robust shortest path tree problem, in VIII Conference on Manufacturing, Modelling, Management & Control (2016) 443–448. [Google Scholar]
- I.A. Carvalho, T.F. Noronha, C. Duhamel, L.F. Vieira and V.F.D. Santos, A fix-and-optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty. Int. Trans. Oper. Res. (2021). [Google Scholar]
- S. Ceria, P. Nobili and A. Sassano, Set covering problem, in Annotated Bibliographies in Combinatorial Optimization, Edited by S. Martello and F. Maffioli. Wiley (1997) 415–428. [Google Scholar]
- A.A. Coco, A.C. Santos and T.F. Noronha, Senario-based heuristics with path-relinking for the robust set covering problem. in Proceedings of the XI Metaheuristics International Conference (MIC) (2015) 1–6. [Google Scholar]
- A.A. Coco, A.C. Santos and T.F. Noronha, Coupling scenario-based heuristics to exact methods for the robust weighted set covering problem with interval data, in VIII Conference on Manufacturing, Modelling, Management & Control (2016) 455–460. [Google Scholar]
- A.A. Coco, A.C. Santos and T.F. Noronha, Formulation and algorithms for the robust maximal covering location problem. Electron. Notes Discrete Math. 64 (2018) 145–154. [CrossRef] [Google Scholar]
- E. Conde, A branch and bound algorithm for the minimax regret spanning arborescence. J. Glob. Optim. 37 (2007) 467–480. [CrossRef] [Google Scholar]
- W. Cook, M. Hartmann, R. Kannan and C. McDiarmid, On integer points in polyhedra. Combinatorica 12 (1992) 27–37. [CrossRef] [MathSciNet] [Google Scholar]
- N.K. Dastjerd and K. Ertogral, A fix-and-optimize heuristic for the integrated fleet sizing and replenishment planning problem with predetermined delivery frequencies. Comput. Ind. Eng. 127 (2019) 778–787. [CrossRef] [Google Scholar]
- D. Degel and P. Lutter, A Robust Formulation of the Uncertain Set Covering Problem. Working paper, Bochum (2013). [Google Scholar]
- V.G. Deineko and G.J. Woeginger, Pinpointing the complexity of the interval min–max regret knapsack problem. Discrete Optim. 7 (2010) 191–196. [CrossRef] [MathSciNet] [Google Scholar]
- Á.P. Dorneles, O.C. de Araújo and L.S. Buriol, A fix-and-optimize heuristic for the high school timetabling problem. Comput. Oper. Res. 52 (2014) 29–38. [Google Scholar]
- A. Dolgui and S. Kovalev, Min–max and min–max (relative) regret approaches to representatives selection problem. 4OR 10 (2012) 181–192. [CrossRef] [MathSciNet] [Google Scholar]
- J. Edmonds, Covers and packings in a family of sets. Bull. Am. Math. Soc. 68 (1962) 494–499. [CrossRef] [Google Scholar]
- M. Fischetti, D. Salvagnin and A. Zanette, A note on the selection of benders’ cuts. Math. Program. 124 (2010) 175–182. [CrossRef] [MathSciNet] [Google Scholar]
- M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32 (1937) 675–701. [CrossRef] [Google Scholar]
- F. Furini, M. Iori, S. Martello and M. Yagiura, Heuristic and exact algorithms for the interval min-max regret knapsack problem. INFORMS J. Comput. 27 (2015) 392–405. [CrossRef] [MathSciNet] [Google Scholar]
- S. Garcia and F. Herrera, An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9 (2008) 2677–2694. [Google Scholar]
- V. Gintner, N. Kliewer and L. Suhl, Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice. OR Spectr. 27 (2005) 507–523. [CrossRef] [Google Scholar]
- P. Guo, W. Cheng, Y. Wang and N. Boysen, Gantry crane scheduling in intermodal rail-road container terminals. Int. J. Prod. Res. 56 (2018) 5419–5436. [Google Scholar]
- O.E. Karaşan, M.C. Pinar and H. Yaman, The robust shortest path problem with interval data, Tech. Rep., Bilkent University, Department of Industrial Engineering (2001). [Google Scholar]
- R.M. Karp, Reducibility among combinatorial problems, in Complexity of computer computations. Springer (1972) 85–103. [CrossRef] [Google Scholar]
- A. Kasperski and P. Zieliński, Complexity of the robust weighted independent set problems on interval graphs. Optim. Lett. 9 (2015) 427–436. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kasperski and P. Zieliński, An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97 (2006) 177–180. [CrossRef] [Google Scholar]
- A. Kasperski and P. Zieliński, Robust discrete optimization under discrete and interval uncertainty: A survey, in Robustness Analysis in Decision Aiding, Optimization, and Analytics. Springer (2016) 113–143. [Google Scholar]
- P. Kouvelis and G. Yu, Robust discrete optimization and its applications, In Vol. 14 of Nonconvex Optimization and its Applications. Springer (1997). [CrossRef] [Google Scholar]
- V. Lebedev and I. Averbakh, Complexity of minimizing the total flow time with interval data and minmax regret criterion. Discrete Appl. Math. 154 (2006) 2167–2177. [CrossRef] [MathSciNet] [Google Scholar]
- R. Montemanni, J. Barta, M. Mastrolilli and L.M. Gambardella, The robust traveling salesman problem with interval data. Transp. Sci. 41 (2007) 366–381. [CrossRef] [Google Scholar]
- P. Nemenyi, Distribution-free multiple comparisons. Biometrics 18 (1962) 263. [Google Scholar]
- J.C. Lang and Z.-J.M. Shen, Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups and substitutions. Eur. J. Oper. Res. 214 (2011) 595–605. [Google Scholar]
- X. Li, Q. Lu, Y. Dong and D. Tao, Sce: A manifold regularized set-covering method for data partitioning. IEEE Trans. Neural Netw. Learn. Syst. 29 (2017) 1760–1773. [Google Scholar]
- C. Papadimitriou, Computational Complexity, Theoretical computer science. Addison-Wesley (1994). [Google Scholar]
- J. Pereira and I. Averbakh, The robust set covering problem with interval data. Ann. Oper. Res. 207 (2013) 1–19. [Google Scholar]
- S.S. Shapiro and M.B. Wilk, An analysis of variance test for normality (complete samples). Biometrika 52 (1965) 591–611. [CrossRef] [Google Scholar]
- L.J. Stockmeyer, The polynomial-time hierarchy. Theor. Comput. Sci. 3 (1976) 1–22. [CrossRef] [Google Scholar]
- A.M. Turhan and B. Bilgen, Mixed integer programming based heuristics for the patient admission scheduling problem. Comput. Oper. Res. 80 (2017) 38–49. [CrossRef] [MathSciNet] [Google Scholar]
- H.-I. Yu, T.-C. Lin and B.-F. Wang, Improved algorithms for the minmax-regret 1-center and 1-median problems. ACM Trans. Algorithms (TALG) 4 (2008) 36. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.