Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 4047 - 4056
DOI https://doi.org/10.1051/ro/2022200
Published online 29 November 2022
  • A.B. Abubakara, P. Kumama, M. Malik and A.H. Ibrahim, A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems. Math. Comput. Simul. 201 (2022) 640–657. [CrossRef] [Google Scholar]
  • N. Andrei, Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algorithms 47 (2008) 143–156. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
  • N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization. Encycl. Optim. (2009) 2560–2571. [Google Scholar]
  • A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A.H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection. AIMS Math. 6 (2021) 6506–6527. [CrossRef] [MathSciNet] [Google Scholar]
  • A.B. Abubakar, M. Malik, P. kumam, H. Mohammed, M. Sun, A.H. Ibrahim and A.I. Kiri, A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control. J. King Saud Univ. Sci. 3 (2022) 101923. [CrossRef] [Google Scholar]
  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [Google Scholar]
  • Y.H. Dai, J.Y. Han, G.H. Liu, D.F. Sun, X. Yin and Y. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (1999) 348–358. [Google Scholar]
  • J. Deepho, A.B. Abubabar, M. Malik and L.A.K. Argyros, Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications. J. Comput. Appl. Math. 405 (2022) 113823. [CrossRef] [Google Scholar]
  • S.S. Djordjevic, New Hybrid Conjugate GradientMethod as a Convex Combination of FR and PRP Methods. Filomat 30 (2016) 3083–3100. [CrossRef] [MathSciNet] [Google Scholar]
  • S.S. Djordjevic, New Hybrid Conjugate Gradient Method as a Convex Combination of LS and CD methods. Filomat 31 (2017) 1813–1825. [CrossRef] [MathSciNet] [Google Scholar]
  • S.S. Djordjevic, New hybrid conjugate gradient method as a convex combination of HS and FR conjugate gradient methods. J. Appl. Math. Comput. 2 (2018) 366–378. [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • R. Fletcher, Practical methods of optimization, 2nd edition. A Wiley-Interscience Publication. John Wiley and Sons, Inc NY, USA (1987). [Google Scholar]
  • R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  • W.W. Hager and H. Zhang, Survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2 (2006) 35–58. [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952) 409–436. [CrossRef] [Google Scholar]
  • A.H. Ibrahim, P. Kumam, A. Kamandi and A.B. Abubakar, An efficient hybrid conjugate gradient method for unconstrained optimization. Optim. Methods Softw. (2022). [Google Scholar]
  • M. Jamil and X.S. Yang, A Literature Survey of Benchmark Functions For Global Optimization Problems. Int. J. Math. Model. Numer. Optim. 4 (2013) 150–194. [Google Scholar]
  • Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms. Part 1: Theory J. Optim. Theory Appl. 69 (1991) 129–137. [CrossRef] [Google Scholar]
  • J. Liu and S. Li, New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput. 245 (2014) 36–43. [MathSciNet] [Google Scholar]
  • M. Malik, A.B. Abubakar, I.M. Sulaiman, M. Mamat, S.S. Abas and S. Sukono, A new three-term conjugate gradient method for unconstrained optimization with applications in portfolio selection and robotic motion control. Part 1: Theory J. Optim. Theory Appl. 51 (2021). [Google Scholar]
  • E. Polak and G. Ribière, Note sur la convergence de mé thodes de directions conjugués. Revue Francaise d’Informatique et de Recherche Opérationnelle 16 (1969) 35–43. [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • M.J.D. Powell, Restart procedures of the conjugate gradient method. Math. Program. 2 (1977) 241–254. [CrossRef] [Google Scholar]
  • B. Sellami, M. Belloufi and Y. Chaib, Globally convergece of nonlinear conjugate gradient method for unconstrainted optimization. RAIRO:RO (2017). [Google Scholar]
  • P. Wolfe, Convergence conditions for Descent methods. II : Some correct. SIAM Rev. 13 (1971) 185–188. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.