Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 993 - 1007
Published online 08 May 2023
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–356. [Google Scholar]
  • L.A. Zadeh, The concept of Linguistic variable and its application to approximate reasoning. Parts I, II, III. Inf. Sci. 8 (1975) 199–251; 8 (1975) 301–357; 9 (1975) 43–80. [CrossRef] [Google Scholar]
  • L.A. Zadeh, The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst. 11 (1983) 199–223. [Google Scholar]
  • M. Toga and H. Watanadc, Expert systems on a chip: an engine for real-time approximate reasoning. IEEE Expert. 1 (1986) 55–62. [CrossRef] [Google Scholar]
  • S.K. Pal and D.P. Mandal, Fuzzy logic and approximate reasoning: an overview. IETE J. Res. 37 (1991) 548–560. [CrossRef] [Google Scholar]
  • S.K. Pal and D.P. Mandal, Linguistic recognition system based on approximate reasoning. Btform Sci. 61 (1992) 135–161. [Google Scholar]
  • B.R. Gaines, Foundations of fuzzy reasoning. Int. J. Man-Mach. Stud. 8 (1976) 623–668. [Google Scholar]
  • J.J. Buckley, Solving possibilistic linear programming problems. Fuzzy Sets Syst. 31 (1989) 329–341. [Google Scholar]
  • C.V. Negoita, The current interest in fuzzy optimization. Fuzzy Sets Syst. 6 (1981) 261–269. [Google Scholar]
  • C. Carlsson, Approximate reasoning for solving fuzzy MCDM problems. Cybern. Syst. 18 (1987) 35–48. [CrossRef] [Google Scholar]
  • M. Delgado, J.L. Verdegay and M.A. Vila, Imprecise costs in mathematical programming problems. Control Cybern. 16 (1987) 114–121. [Google Scholar]
  • M. Delgado, J.L. Verdegay and M.A. Vila, A procedure for ranking fuzzy numbers using fuzzy relations. Fuzzy Sets Syst. 26 (1988) 49–62. [Google Scholar]
  • S.A. Orlovski, On formalization of a general fuzzy mathematical problem. Fuzzy Sets Syst. 3 (1980) 311–321. [Google Scholar]
  • H. Tanaka and K. Asai, Fuzzy solutions in fuzzy linear programming problems. IEEE Trans. Syst. Man Cybern. SMC-14 (1984) 325–328. [CrossRef] [Google Scholar]
  • M. Roubens and P. Vincke, Preference Modeling. Springer-Verlag, Berlin (1985). [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Description and optimization of fuzzy systems. Int. J. General Syst. 2 (1976) 209–215. [Google Scholar]
  • H.J. Zimmermann, Application of fuzzy set theory to mathematical programming. Inf. Sci. 36 (1985) 29–58. [CrossRef] [Google Scholar]
  • J. Ramik and J. Rimanek, Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16 (1985) 123–138. [Google Scholar]
  • M. Lapuccl, T. Levato and M. Sclandrone, Convergent inexact penalty decomposition methods for cardinality-constrained problems. J. Opt. Theory Appl. 188 (2021) 473–496. [CrossRef] [Google Scholar]
  • M. Ma, M. Friedman and A. Kandel, Duality in fuzzy linear systems. Fuzzy Sets Syst. 109 (2000) 55–58. [Google Scholar]
  • H.C. Wu, Duality theorems in fuzzy mathematical programming problems based on the concept of necessity. Fuzzy Sets Syst. 139 (2003) 363–377. [Google Scholar]
  • C. Zhang, X.H. Yung and E.S. Lee, Duality theory in fuzzy mathematical programming problems with fuzzy coefficients. Comput. Math. Appl. 49 (2005) 1709–1730. [Google Scholar]
  • H.C. Wu, Duality theorems and saddle point optimality conditions in fuzzy nonlinear programming problems based on different solution concepts. Fuzzy Sets Syst. 158 (2007) 1588–1607. [CrossRef] [Google Scholar]
  • S.H. Nasseri and A. Ebrahimnejad, A new approach to duality in fuzzy linear programming, in Fuzzy Engineering and Operations Research. Advances in Intelligent and Soft Computing, edited by B.Y. Cao and X.J. Xie. Vol. 147. Springer, Berlin, Heidelberg (2012). [Google Scholar]
  • H. Mishmast Nehi and A. Drayab, Duality theorems in fuzzy optimization problems. Fuzzy Inf. Eng. 5 (2013) 87–98. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Zou, Extended duality in fuzzy optimization problems. Math. Prob. Eng. (2015). DOI: 10.1155/2015/826752. [Google Scholar]
  • R. Fuller and H.J. Zimmermann, Fuzzy reasoning for solving fuzzy mathematical problems. Fuzzy Sets Syst. 60 (1993) 121–133. [Google Scholar]
  • S.K. De, Solving an EOQ model under fuzzy reasoning. Appl. Soft Comput. 99 (2021) 106892. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.