Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 697 - 714
Published online 28 April 2023
  • S. Adali, J.C. Bruch, J.M. Sloss and I.S. Sadek, Structural control of a variable cross-section beam by distributed forces. Mech. Based Des. Struct. Mach. 16 (1988) 313–333. [CrossRef] [Google Scholar]
  • M. Adan and V. Novo, Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 121 (2004) 515–540. [CrossRef] [MathSciNet] [Google Scholar]
  • K.K. Annamdas and S.S. Rao, Multi-objective optimization of engineering systems using game theory and particle swarm optimization. Optim. Eng. 41 (2009) 737–752. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in multiobjective optimization. Bull. Math. Soc. Sci. Math. Roum. 99 (2008) 109–121. [Google Scholar]
  • H. Benson, An improved definition of proper efficiency for vector maximization with respect to cones. J. Optim. Theory Appl. 71 (1979) 232–241. [Google Scholar]
  • J.M. Borwein, Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15 (1977) 57–63. [CrossRef] [MathSciNet] [Google Scholar]
  • E.U. Choo and D.R. Atkins, Proper efficiency in nonconvex multicriteria programming. Math. Oper. Res. 8 (1983) 467–470. [CrossRef] [MathSciNet] [Google Scholar]
  • J.P. Dauer and W. Stadler, A survey of vector optimization in infinite-dimensional spaces. II. J. Optim. Theory Appl. 51 (1986) 205–241. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Dutta and V. Vetrivel, On approximate minima in vector optimization. Numer. Funct. Anal. Optim. 22 (2001) 845–859. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). [Google Scholar]
  • G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008). [CrossRef] [Google Scholar]
  • A. Engau, Definition and characterization of Geoffrion proper efficiency for real vector optimization with infinitely many criteria. J. Optim. Theory Appl. 165 (2015) 439–457. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Engau, Proper efficiency and tradeoffs in multiple criteria and stochastic optimization. Math. Oper. Res. 42 (2017) 119–134. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Engau and M.M. Wiecek, Cone characterizations of approximate solutions in real vector optimization. J. Optim. Theory Appl. 134 (2007) 499–513. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Engau and M.M. Wiecek, Generating ε-efficient solutions in multi-objective programming. Eur. J. Oper. Res. 177 (2007) 1566–1579. [CrossRef] [Google Scholar]
  • Y. Gao, X. Yang and K.L. Teo, Optimality conditions for approximate solutions in vector optimization problems. J. Ind. Manag. Optim. 7 (2011) 483–496. [CrossRef] [MathSciNet] [Google Scholar]
  • A.M. Geoffrion, Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 (1968) 618–630. [Google Scholar]
  • B.A. Ghaznavi-ghosoni, M. Ghaznavi and E. Khorram, On approximating weakly/properly efficient solutions in multi-objective programming. Math. Comput. Model. 54 (2011) 3172–3181. [CrossRef] [Google Scholar]
  • B.A. Ghaznavi-ghosoni, M. Ghaznavi, E. Khorram and M. Soleimani-damaneh, Scalarization for characterization of approximate strong/weak/proper efficiency in multiobjective optimization. Optimization 62 (2013) 703–720. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ghaznavi, Optimality conditions via scalarization for approximate quasi efficiency in multiobjective optimization. Filomat 31 (2017) 671–680. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ghaznavi, F. Akbari and E. Khorram, Optimality conditions via a unified direction approach for (approximate) efficiency in multiobjective optimization. Optim. Methods Softw. 36 (2021) 627–652. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ginchev, A. Guerraggio and M. Rocca, Geoffrion type characterization of higher-order properly efficient points in vector optimization. J. Math. Anal. Appl. 328 (2007) 780–788. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Gutierrez, B. Jimenez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17 (2006) 688–710. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Gutierrez, B. Jimenez and V. Novo, Optimality conditions via scalarization for a new ε-efficiency concept in vector optimization problems. Eur. J. Oper. Res. 201 (2010) 11–22. [CrossRef] [Google Scholar]
  • M.I. Henig, Proper efficiency with respect to cones. J. Optim. Theory Appl. 36 (1982) 387–407. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Hozzar, G. Tohidi and B. Daneshian, Two methods for determining properly efficient solutions with a minimum upper bound for trade-offs. Filomat 33 (2019) 1551–1559. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel and C. Tammer, The relationship between multi-objective robustness concepts and set-valued optimization. J. Fixed Point Theory Appl. 2014 (2014) 1–20. [CrossRef] [Google Scholar]
  • J. Jahn, Vector Optimization, 2nd ed., Springer, Berlin (2011). [CrossRef] [Google Scholar]
  • I. Kaliszewski, A modified weighted Tchebycheff metric for multiple objective programming. Comput. Operat. Res. 14 (1987) 315–323. [CrossRef] [Google Scholar]
  • M. Karimi and B. Karimi, Linear and conic scalarizations for obtaining properly efficient solutions in multiobjective optimization. J. Math. Sci. 11 (2017) 319–325. [CrossRef] [Google Scholar]
  • R.L. Keeney and H. Raiffa, Decisions with multiple objectives: preferences and value tradeoffs, in Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York, NY (1976). [Google Scholar]
  • P. Kesarwani, P.K. Shukla, J. Dutta and K. Deb, Approximations for Pareto and proper Pareto solutions and their KKT conditions. Math. Meth. Oper. Res. 96 (2022) 123–148. [CrossRef] [Google Scholar]
  • K. Khaledian, E. Khorram and B. Karimi, Characterizing ε-properly efficient solutions. Optim. Methods Softw. 30 (2014) 583–593. [Google Scholar]
  • K. Klamroth, E. Köbis, A. Schöbel and C. Tammer, A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals. Optimization 62 (2013) 649–671. [CrossRef] [MathSciNet] [Google Scholar]
  • H.W. Kuhn and A.W. Tucker, Nonlinear programming, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950. University of California Press, Berkeley (1951) 481–492. [Google Scholar]
  • S.S. Kutateladze, Convex ε-programming. Sov. Math. Dokl. 20 (1979) 391–393. [Google Scholar]
  • G.M. Lee, G.S. Kim and N. Dinh, Optimality conditions for approximate solutions of convex semi-infinite vector optimization problems, in Recent Developments in Vector Optimization, Vector Optimization, Edited by Q.H. Ansari and J.-C. Yao. Vol 1, Springer, Berlin (2012) 275–295. [CrossRef] [Google Scholar]
  • J.C. Liu, ε-Properly efficient solutions to nondifferentiable multi-objective programming problems. Appl. Math. Lett. 12 (1999) 109–113. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Li and S. Wang, ε-Approximation solutions in multiobjective optimization. optimization 44 (1998) 161–174. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Loridan, ε-Solutions in vector minimization problems. J. Optim. Theory Appl. 43 (1984) 265–276. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Ogryczak, Multiple criteria optimization and decisions under risk. Control Cybern. 31 (2002) 975–1003. [Google Scholar]
  • L. Pourkarimi and M. Soleimani-Damaneh, Existence, Proper Pareto reducibility, and connectedness of the nondominated set in multi-objective optimization. J. Nonlinear Convex Anal. 19 (2018) 1287–1295. [MathSciNet] [Google Scholar]
  • Q. Qiu and X. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions. J. Global Optim. 47 (2010) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Rastegar and E. Khorram, A combined scalarizing method for multiobjective programming problems. Eur. J. Oper. Res. 236 (2014) 229–237. [CrossRef] [Google Scholar]
  • L. Shao and M. Ehrgott, Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68 (2008) 257–276. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Shao and M. Ehrgott, Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Meth. Oper. Res. 68 (2008) 469–492. [CrossRef] [Google Scholar]
  • T. Shitkovskaya and D.S. Kim, ε-efficient solutions in semi-infinite multiobjective optimization. RAIRO: OR 52 (2018) 1397–1410. [CrossRef] [EDP Sciences] [Google Scholar]
  • P.K. Shukla, J. Dutta, K. Deb and P. Kesarwani, On a practical notion of Geoffrion proper optimality in multicriteria optimization. Optimization 69 (2019) 1–27. [Google Scholar]
  • R.E. Steuer and E.U. Choo, An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26 (1983) 326–344. [CrossRef] [Google Scholar]
  • R.E. Steuer, Multiple criteria optimization, in Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1986). [Google Scholar]
  • R.E. Steuer and P. Na, Multiple criteria decision making combined with finance: a categorized bibliographic study. Eur. J. Oper. Res. 150 (2003) 496–515. [CrossRef] [Google Scholar]
  • X. Yang, Alternative theorems and optimality conditions with weakened convexity. Opscarch 29 (1992) 125–135. [Google Scholar]
  • X. Yang, Generalized subconvexlike functions and multiple objective optimization. Syst. Sci. Math. Sci. 8 (1995) 254–259. [Google Scholar]
  • K. Winkler, Geoffrion proper efficiency in an infinite dimensional space. Optimization 53 (2004) 355–368. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Zarepisheh and P.M. Pardalos, An equivalent transformation of multi-objective optimization problems. Ann. Oper. Res. 249 (2017) 5–15. [CrossRef] [MathSciNet] [Google Scholar]
  • K.Q. Zhao and X.M. Yang, E-Benson proper efficiency in vector optimization. Optimization 64 (2015) 739–752. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.