Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 481 - 501
Published online 21 March 2023
  • M.K. Salameh and M.Y. Jaber, Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64 (2000) 59–64. [Google Scholar]
  • A.M. Jamal, B.R. Sarker and S. Mondal, Optimal manufacturing batch size with rework process at a single-stage production system. Comput. Ind. Eng. 47 (2004) 77–89. [CrossRef] [Google Scholar]
  • B.R. Sarker, A.M.M. Jamal and S. Mondal, Optimal batch sizing in a multi-stage production system with rework consideration. Eur. J. Oper. Res. 184 (2008) 915–929. [CrossRef] [Google Scholar]
  • L.E. Cádenas-Barrón, On optimal manufacturing batch size with rework process at single-stage production system. Comput. Ind. Eng. 53 (2007) 196–198. [CrossRef] [Google Scholar]
  • L.E. Cádenas-Barrón, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 57 (2009) 1105–1113. [CrossRef] [Google Scholar]
  • K.-J. Chung, The economic production quantity with rework process in supply chain management. Comput. Math. with Appl. 62 (2011) 2547–2550. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Khan, M.Y. Jaber, A.L. Guiffrida and S. Zolfaghari, A review of the extensions of a modified EOQ model for imperfect quality items. Int. J. Prod. Econ. 132 (2011) 1–12. [Google Scholar]
  • B. Pal, S.S. Sana and K. Chaudhuri, A mathematical model on EPQ for stochastic demand in an imperfect production system. J. Manuf. Syst. 32 (2013) 260–270. [CrossRef] [Google Scholar]
  • H.-M. Wee, W.-T. Wang and L.E. Cádenas-Barrón, An alternative analysis and solution procedure for the EPQ model with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 64 (2013) 748–755. [CrossRef] [Google Scholar]
  • R.S. Kumar and A. Goswami, A fuzzy random EPQ model for imperfect quality items with possibility and necessity constraints. Appl. Soft Comput. 34 (2015) 838–850. [CrossRef] [Google Scholar]
  • M.-S. Kim, J.-S. Kim, B. Sarkar, M. Sarkar and M.W. Iqbal, An improved way to calculate imperfect items during long-run production in an integrated inventory model with backorders. J. Manuf. Syst. 47 (2018) 153–167. [CrossRef] [Google Scholar]
  • M. Al-Salamah, Economic production quantity in an imperfect manufacturing process with synchronous and asynchronous flexible rework rates, Oper. Res. Perspect. 6 (2019) 100103. [MathSciNet] [Google Scholar]
  • B.K. Dey, B. Sarkar and H. Seok, Cost-effective smart autonomation policy for a hybrid manufacturing-remanufacturing. Comput. Ind. Eng. 162 (2021) 107758. [CrossRef] [Google Scholar]
  • B. Marchi, S. Zanoni, L.E. Zavanella and M.Y. Jaber, Supply chain models with greenhouse gases emissions, energy usage, imperfect process under different coordination decisions. Int. J. Prod. Econ. 211 (2019) 145–153. [CrossRef] [Google Scholar]
  • B. Sarkar, B.K. Dey, S. Pareek and M. Sarkar, A single-stage cleaner production system with random defective rate and remanufacturing. Comput. Ind. Eng. 150 (2020) 106861. [CrossRef] [Google Scholar]
  • B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. 59 (2021) 1258–1280. [Google Scholar]
  • M. Tayyab, M.S. Habib, M.S.S. Jajja and B. Sarkar, Economic assessment of a serial production system with random imperfection and shortages: a step towards sustainability. Comput. Ind. Eng. 171 (2022) 108398. [CrossRef] [Google Scholar]
  • R.A. Inman, Implications of environmental management for operations management. Prod. Plan. Control. 13 (2002) 47–55. [CrossRef] [Google Scholar]
  • A.P. Barbosa-Póvoa, Sustainable supply chains: key challenges, Comput. Aided Chem. Eng. 27 (2009) 127–132. [CrossRef] [Google Scholar]
  • Y. Bouchery, A. Ghaffari, Z. Jemai and Y. Dallery, Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222 (2012) 229–240. [Google Scholar]
  • M. Bonney and M.Y. Jaber, Environmentally responsible inventory models: non-classical models for a non-classical era. Int. J. Prod. Econ. 133 (2011) 43–53. [CrossRef] [Google Scholar]
  • D. Battini, A. Persona and F. Sgarbossa, A sustainable EOQ model: theoretical formulation and applications. Int. J. Prod. Econ. 149 (2014) 145–153. [Google Scholar]
  • R. Hammami, I. Nouira and Y. Frein, Carbon emissions in a multi-echelon production-inventory model with lead time constraints. Int. J. Prod. Econ. 164 (2015) 292–307. [Google Scholar]
  • N. Kazemi, S.H. Abdul-Rashid, R.A.R. Ghazilla, E. Shekarian and S. Zanoni, Economic order quantity models for items with imperfect quality and emission considerations. Int. J. Syst. Sci. Oper. Logist. 5 (2018) 99–115. [Google Scholar]
  • T.-Y. Lin and B.R. Sarker, A pull system inventory model with carbon tax policies and imperfect quality items. Appl. Math. Model. 50 (2017) 450–462. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Taleizadeh, V.R. Soleymanfar and K. Govindan, Sustainable economic production quantity models for inventory systems with shortage. J. Clean. Prod. 174 (2018) 1011–1020. [CrossRef] [Google Scholar]
  • S. Tiwari, W. Ahmed and B. Sarkar, Sustainable ordering policies for non-instantaneous deteriorating items under carbon emission and multi-trade-credit-policies. J. Clean. Prod. 240 (2019) 118183. [CrossRef] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 256 (2020) 120268. [CrossRef] [Google Scholar]
  • P. Gautam and A. Khanna, Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology. Int. J. Syst. Assur. Eng. Manag. 12 (2021) 910–918. [CrossRef] [Google Scholar]
  • P. Gautam, S. Maheshwari and C.K. Jaggi, Sustainable production inventory model with greening degree and dual determinants of defective items. J. Clean. Prod. 367 (2022) 132879. [CrossRef] [Google Scholar]
  • D. Yadav, R. Singh, A. Kumar and B. Sarkar, Reduction of pollution through sustainable and flexible production by controlling by-products. J. Environ. Inf. 40 (2022) 106–124. [Google Scholar]
  • D. Kim and W.J. Lee, Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109 (1998) 212–227. [CrossRef] [Google Scholar]
  • R. Maihami and B. Karimi, Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts. Comput. Oper. Res. 51 (2014) 302–312. [Google Scholar]
  • A.A. Taleizadeh and M. Noori-daryan, Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int. J. Syst. Sci. 47 (2016) 919–931. [CrossRef] [Google Scholar]
  • A.K. Sahoo, S.K. Indrajitsingha, P.N. Samanta and U.K. Misra, Selling price dependent demand with allowable shortages model under partially backlogged-deteriorating items. Int. J. Appl. Comput. Math. 5 (2019) 104. [CrossRef] [Google Scholar]
  • A. Hatibaruah and S. Saha, A production inventory model for ameliorating and deteriorating items with price, time and advertisement frequency dependent demand under the effect of inflation. Int. J. Appl. Comput. Math. 8 (2022) 201. [CrossRef] [Google Scholar]
  • L.E. Cádenas-Barrón and S.S. Sana, Multi-item EOQ inventory model in a two-layer supply chain while demand varies with promotional effort. Appl. Math. Model. 39 (2015) 6725–6737. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kim and K. Chung, Optimization of capacity allocation models with effort dependent demand in global supply chain. Sustainability 14 (2022) 1375. [CrossRef] [Google Scholar]
  • H.J. Chang, R.H. Su, C. Te Yang and M.W. Weng, An economic manufacturing quantity model for a two-stage assembly system with imperfect processes and variable production rate. Comput. Ind. Eng. 63 (2012) 285–293. [CrossRef] [Google Scholar]
  • X.-S. Yang, A new metaheuristic Bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence. Vol. 284. Springer, Berlin, Heidelberg (2010) 65–74. [Google Scholar]
  • K. Khan and A. Sahai, A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-Learning context. Int. J. Intell. Syst. Appl. 4 (2012) 23–29. [Google Scholar]
  • J. Sadeghi, S.M. Mousavi, S.T.A. Niaki and S. Sadeghi, Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid Bat algorithm. Transp. Res. Part E Logist. Transp. Rev. 70 (2014) 274–292. [CrossRef] [Google Scholar]
  • S. Srivastava and S.K. Sahana, Application of bat algorithm for transport network design problem. Appl. Comput. Intell. Soft Comput. 2019 (2019) 1–13. [Google Scholar]
  • M. Shehab, M.A. Abu-Hashem, M.K.Y. Shambour, A.I. Alsalibi, O.A. Alomari, J.N.D. Gupta, A.R. Alsoud, B. Abuhaija and L. Abualigah, A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization. Springer Netherlands (2022) 1–33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.