Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1523 - 1537
Published online 21 June 2023
  • Y. Almogy and O. Levin, Parametric analysis of a multi-stage stochastic shipping problem. Oper. Res. 69 (1970) 359–370. [Google Scholar]
  • H. Jiao and B. Li, Solving min–max linear fractional programs based on image space branch-and-bound scheme. Chaos Solitons Fractals 164 (2022) 112682. [CrossRef] [Google Scholar]
  • C.D. Maranas, I.P. Androulakis, C.A. Floudas, A.J. Berger and J.M. Mulvey, Solving long-term financial planning problems via global optimization. J. Econ. Dyn. Control 21 (1997) 1405–1425. [CrossRef] [Google Scholar]
  • H. Watanabe, Bond portfolio optimization problems and their applications to index tracking: a partial optimization approach. J. Oper. Res. Soc. Jpn 39 (1996) 295–306. [Google Scholar]
  • S. Schaible, Fractional programming. Handb. Global Optim. 168 (1995) 495–608. [CrossRef] [Google Scholar]
  • M.H. Goedhart and J. Spronk, Financial planning with fractional goals. Eur. J. Oper. Res. 82 (1995) 111–124. [CrossRef] [Google Scholar]
  • C. Bajona-Xandri and J.E. Martinez-Legaz, Lower subdifferentiability in minimax fractional programming. Optimization 45 (1999) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Jiao, W. Wang and Y. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problems. J. Comput. Appl. Math. 419 (2023) 114784. [CrossRef] [Google Scholar]
  • F. Ding, Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Modell. 37 (2013) 1694–1704. [CrossRef] [Google Scholar]
  • F. Ding and Y. Gu, Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems. Int. J. Comput. Math. 89 (2012) 2019–2028. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Ding, X. Liu and J. Chu, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory App. 7 (2013) 176–184. [CrossRef] [Google Scholar]
  • A.I. Barros and J.B.G. Frenk, Generalized fractional programming and cutting plane algorithms. J. Optim. Theory App. 87 (1995) 103–120. [CrossRef] [Google Scholar]
  • Q.G. Feng, H.P. Mao and H.W. Jiao, A feasible method for a class of mathematical problems in manufacturing system. Key Eng. Mater. 460 (2011) 806–809. [CrossRef] [Google Scholar]
  • H. Jiao, J. Ma and Y. Shang, Image space branch-and-bound algorithm for globally solving minimax linear fractional programming problem. Pac. J. Optim. 18 (2022) 195–212. [Google Scholar]
  • Y. Benadada and J.A. Ferland, Partial linearization for generalized fractional programming. Z. Oper. Res. 32 (1988) 101–106. [MathSciNet] [Google Scholar]
  • R.W. Freund and F. Jarre, An interior-point method for fractional programs with convex constraints. Math. Prog. 67 (1994) 407–440. [CrossRef] [Google Scholar]
  • J.Y. Lin and R.L. Sheu, Modified Dinkelbach-type algorithm for generalized fractional programs with infinitely many ratios. J. Optim. Theory App. 126 (2005) 323–343. [CrossRef] [Google Scholar]
  • M. Gugat, Prox-regularization methods for generalized fractional programming. J. Optim. Theory App. 99 (1998) 691–722. [CrossRef] [Google Scholar]
  • H.C. Lai and J.C. Lee, On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 146 (2002) 115–126. [CrossRef] [MathSciNet] [Google Scholar]
  • H.C. Lai, J.C. Liu and K. Tanaka, Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. App. 230 (1999) 311–328. [CrossRef] [Google Scholar]
  • Z.A. Liang, H.X. Huang and P.M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory App. 110 (2001) 611–619. [CrossRef] [Google Scholar]
  • I. Ahmad and Z. Husain, Duality in nondifferentiable minimax fractional programming with generalized convexity. Appl. Math. Comput. 176 (2006) 545–551. [MathSciNet] [Google Scholar]
  • S. Tanimoto, Duality for a class of nondifferentiable mathematical programming problems. J. Math. Anal. App. 79 (1981) 286–294. [CrossRef] [Google Scholar]
  • V. Jeyakumar, G.Y. Li and S. Srisatkunarajah, Strong duality for robust minimax fractional programming problems. Eur. J. Oper. Res. 228 (2013) 331–336. [CrossRef] [Google Scholar]
  • Z. Husain, I. Ahmad and S. Sharma, Second order duality for minmax fractional programming. Optim. Lett. 3 (2009) 277–286. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Khajavirad and N.V. Sahinidis, A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10 (2018) 383–421. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Jiao and S. Liu, A new linearization technique for minimax linear fractional programming. Int. J. Comput. Math. 98 (2014) 1730–1743. [CrossRef] [MathSciNet] [Google Scholar]
  • C.F. Wang, Y. Jiang and P.P. Shen, A new branch-and-bound algorithm for solving minimax linear fractional programming. J. Math. 38 (2018) 113–123. [Google Scholar]
  • H. Jiao, W. Wang and P. Shen, Piecewise linear relaxation method for globally solving a class of multiplicative problems. Pac. J. Optim. 19 (2023) 97–118. [MathSciNet] [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO: Oper. Res. 55 (2021) S2923–S2952. [CrossRef] [EDP Sciences] [Google Scholar]
  • H. Jiao, W. Wang, J. Yin and Y. Shang, Image space branch-reduction-bound algorithm for globally minimizing a class of multiplicative problems. RAIRO: Oper. Res. 56 (2022) 1533–1552. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Mondal, S.K. Roy and S. Midya, Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem. J. Ambient Intell. Humanized Comput. 14 (2023) 6975–6999. [CrossRef] [Google Scholar]
  • H. Jiao, J. Ma, P. Shen and Y. Qiu, Effective algorithm and computational complexity for solving sum of linear ratios problem. J. Ind. Manage. Optim. 19 (2023) 4410–4427. [CrossRef] [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • H. Jiao, Y. Shang and R. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions. Optimization 72 (2023) 1577–1607. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.