Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1149 - 1166
Published online 18 May 2023
  • R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993). [Google Scholar]
  • D.L. Applegate, R.E. Bixby, V. Chvatal and W.J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, USA (2007). [Google Scholar]
  • B. Behdani and J.C. Smith, An integer-programming-based approach to the close-enough traveling salesman problem. INFORMS J. Comput. 26 (2014) 415–432. [CrossRef] [MathSciNet] [Google Scholar]
  • W.P. Coutinho, R.Q.D. Nascimento, A.A. Pessoa and A. Subramanian, A branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS J. Comput. 28 (2016) 752–765. [CrossRef] [MathSciNet] [Google Scholar]
  • J.R. Current and D.A. Schilling, The covering salesman problem. Transp. Sci. 23 (1989) 208–213. [Google Scholar]
  • J.R. Current and D.A. Schilling, The median tour and maximal covering tour problems: formulations and heuristics. Eur. J. Oper. Res. 73 (1994) 114–126. [CrossRef] [Google Scholar]
  • J. Current, H. Pirkul and E. Rolland, Efficient algorithms for solving the shortest covering path problem. Transp. Sci. 28 (1994) 317–327. [Google Scholar]
  • M. Dell’Amico, R. Montemanni and S. Novellani, Algorithms based on branch and bound for the flying sidekick traveling salesman problem. Omega 104 (2021) 102493. [Google Scholar]
  • B. Dezsö, A. Jüttner and P. Kovács, LEMON – an open source C++ graph template library. Electron. Notes Theor. Comput. Sci. 264 (2011) 23–45. [CrossRef] [Google Scholar]
  • J. Dong, N. Yang and M. Chen, Heuristic approaches for a TSP variant: the automatic meter reading shortest tour problem, in Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies. Springer (2007) 145–163. [CrossRef] [Google Scholar]
  • A. Dumitrescu and J.S.B. Mitchell, Approximation algorithms for tsp with neighborhoods in the plane. J. Algorithms 48 (2003) 135–159. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Fischetti, J.J.S. González and P. Toth, A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45 (1997) 378–394. [Google Scholar]
  • M. Gendreau, G. Laporte and F. Semet, The covering tour problem. Oper. Res. 45 (1997) 568–576. [Google Scholar]
  • B. Golden, Z. Naji-Azimi, S. Raghavan, M. Salari and P. Toth, The generalized covering salesman problem. INFORMS J. Comput. 24 (2012) 534–553. [CrossRef] [MathSciNet] [Google Scholar]
  • D.J. Gulczynski, J.W. Heath and C.C. Price, The close enough traveling salesman problem: a discussion of several heuristics, in Perspectives in Operations Research. Springer (2006) 271–283. [Google Scholar]
  • Y. Lu, U. Benlic and Q. Wu, A highly effective hybrid evolutionary algorithm for the covering salesman problem. Inf. Sci. 564 (2021) 144–162. [CrossRef] [Google Scholar]
  • V. Pandiri, A. Singh and A. Rossi, Two hybrid metaheuristic approaches for the covering salesman problem. Neural Comput. App. 32 (2020) 15643–15663. [Google Scholar]
  • G. Reinelt, TSPLIB – a traveling salesman problem library. ORSA J. Comput. 3 (1991) 376–384. [Google Scholar]
  • M. Salari and Z. Naji-Azimi, An integer programming-based local search for the covering salesman problem. Comput. Oper. Res. 39 (2012) 2594–2602. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Salari, M. Reihaneh and M.S. Sabbagh, Combining ant colony optimization algorithm and dynamic programming technique for solving the covering salesman problem. Comput. Ind. Eng. 83 (2015) 244–251. [CrossRef] [Google Scholar]
  • R. Shuttleworth, B.L. Golden, S. Smith and E. Wasil, Advances in meter reading: heuristic solution of the close enough traveling salesman problem over a street network, in The Vehicle Routing Problem: Latest Advances and New Challenges. Springer (2008) 487–501. [Google Scholar]
  • G.O. Tiniç, O.E. Karasan, B.Y. Kara, J.F. Campbell and A. Ozel, Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones. Transp. Res. Part B: Methodol. 168 (2023) 81–123. [Google Scholar]
  • S.A. Vásquez, G. Angulo and M.A. Klapp, An exact solution method for the tsp with drone based on decomposition. Comput. Oper. Res. 127 (2021) 105127. [CrossRef] [Google Scholar]
  • P. Venkatesh, G. Srivastava and A. Singh, A multi-start iterated local search algorithm with variable degree of perturbation for the covering salesman problem, in Harmony Search and Nature Inspired Optimization Algorithms. Springer (2019) 279–292. [CrossRef] [Google Scholar]
  • X. Zang, L. Jiang, M. Ratli and B. Ding, A parallel variable neighborhood search for solving covering salesman problem. Optim. Lett. 16 (2022) 175–190. [Google Scholar]
  • H. Zhang and Y. Xu, Online covering salesman problem. J. Comb. Optim. 35 (2018) 941–954. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.