Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 1617 - 1645
DOI https://doi.org/10.1051/ro/2023067
Published online 11 July 2023
  • J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job shop scheduling. Manage. Sci. 34 (1988) 391–401. [CrossRef] [Google Scholar]
  • F. Ahmadizar, M. Ghazanfari and S.M.T.F. Ghomi, Application of chance-constrained programming for stochastic group shop scheduling problem. Int. J. Adv. Manuf. Technol. 42 (2009) 321. [CrossRef] [Google Scholar]
  • A. Ait El Cadi, R. Benmansour, F. Serraj and A. Artiba, A joint optimization-simulation model to minimize the makespan on a repairable machine, in Proceedings of the International Conference on Industrial Engineering and Systems Management (IEEE-IESM’2015), Seville, Spain, October 21–23 2015. University of Seville, International Institute for Innovation, Industrial Engineering and Entrepreneurship (I4e2) (2015) 489–495. [CrossRef] [Google Scholar]
  • M.S. Al-Ashhab and J.S. Alzahrani, Robust multi-objective job shop scheduling under uncertainty. IJCSNS 22 (2022) 45. [Google Scholar]
  • J.S. Alzahrani, Job-shop scheduling optimization with stochastic processing times. Int. J. Eng. Technol. Manage. Res. 6 (2019) 73–83. [Google Scholar]
  • D. Amaro, M. Rosenkranz, N. Fitzpatrick, K. Hirano and M. Fiorentini, A case study of variational quantum algorithms for a job shop scheduling problem. EPJ Quantum Technol. 9 (2022) 5. [CrossRef] [Google Scholar]
  • S.S. Amelian, S.M. Sajadi, M. Navabakhsh and M. Esmaelian, Multi-objective optimization for stochastic failure-prone job shop scheduling problem via hybrid of NSGA-II and simulation method. Expert Syst. 39 (2022) e12455. [CrossRef] [Google Scholar]
  • K. Araki and Y. Yoshitomi, Stochastic job-shop scheduling: a hybrid approach combining pseudo particle swarm optimization and the Monte Carlo method. J. Adv. Mech. Des. Syst. Manuf. 10 (2016) JAMDSM0053-JAMDSM0053. [CrossRef] [Google Scholar]
  • C. Artigues, J.-C. Billaut and C. Esswein, Maximization of solution flexibility for robust shop scheduling. Eur. J. Oper. Res. 165 (2005) 314–328. [CrossRef] [Google Scholar]
  • L. Asadzadeh and K. Zamanifar, An agent-based parallel approach for the job shop scheduling problem with genetic algorithms. Math. Comput. Modelling 52 (2010) 1957–1965. [CrossRef] [Google Scholar]
  • L. Asadzadeh and K. Zamanifar, Design and implementation of a design and implementation of a multi-agent system for the job shop scheduling problem. Int. J. Comput. Sci. Secur. (IJCSS) 5 (2011) 287. [Google Scholar]
  • J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in Proceedings of the Second International Conference on Genetic Algorithms. Vol. 206 (1987) 14–21. [Google Scholar]
  • A. Banharnsakun, B. Sirinaovakul and T. Achalakul, Job shop scheduling with the best-so-far ABC. Eng. App. Artif. Intell. 25 (2012) 583–593. [CrossRef] [Google Scholar]
  • J.E. Beasley, OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41 (1990) 1069–1072. [CrossRef] [Google Scholar]
  • I. Benkalai, D. Rebaine and P. Baptiste, Scheduling job shop problems with operators with respect to the maximum lateness. RAIRO: Oper. Res. 54 (2020) 555–568. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • L. Bianchi, M. Dorigo, L.M. Gambardella and W.J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8 (2009) 239–287. [CrossRef] [MathSciNet] [Google Scholar]
  • J.-C. Billaut and V. T’Kindt, Multicriteria Scheduling. Springer (2002). [Google Scholar]
  • J.-C. Billaut, A. Moukrim and E. Sanlaville, Flexibility and Robustness in Scheduling. John Wiley & Sons (2013). [Google Scholar]
  • C. Blum, M.J.B. Aguilera, A. Roli and M. Sampels, Sampels, Hybrid Metaheuristics: An Emerging Approach to Optimization, 1st edition. Vol. 114 of Studies in Computational Intelligence, 1860-949X. Springer Publishing Company, Incorporated, Berlin, Germany (2008). [CrossRef] [Google Scholar]
  • P. Brucker, Scheduling Algorithms, 5th edition. Springer, Berlin (2007). [Google Scholar]
  • X. Cai, L. Wang and X. Zhou, Single-machine scheduling to stochastically minimize maximum lateness. J. Scheduling 10 (2007) 293–301. [CrossRef] [MathSciNet] [Google Scholar]
  • M.C. Campi and S. Garatti, The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19 (2008) 1211–1230. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Carlier and P. Chrétienne, Problèmes d’ordonnancement, modélisation, complexité, algorithmes. Masson (1988). [Google Scholar]
  • J. Carlier and É. Pinson, An algorithm for solving the job-shop problem. Manage. Sci. 35 (1989) 164–176. [CrossRef] [Google Scholar]
  • D. Carlucci, P. Renna and S. Materi, A job-shop scheduling decision-making model for sustainable production planning with power constraint. IEEE Trans. Eng. Manage. 70 (2021) 1–10. [Google Scholar]
  • C.S. Chong, A.I. Sivakumar, M.Y.H. Low and K.L. Gay, A bee colony optimization algorithm to job shop scheduling, in Proceedings of the 38th Conference on Winter Simulation. Winter Simulation Conference (2006) 1954–1961. [Google Scholar]
  • P. Chrétienne, E.G. Coffman Jr., J. Lenstra and Z. Liu, editors. Scheduling Theory and its Applications. John Wiley & Sons, Chichester (1995). [Google Scholar]
  • A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, Ant system for job-shop scheduling. Belgian J. Oper. Res. Stat. Comput. Sci. 34 (1994) 39–53. [Google Scholar]
  • O.H. Constantino and C. Segura, A parallel memetic algorithm with explicit management of diversity for the job shop scheduling problem. Appl. Intell. 52 (2022) 141–153. [CrossRef] [Google Scholar]
  • A.L. Corcoran and R.L. Wainwright, Using libga to develop genetic algorithms for solving combinatorial optimization problems, in Practical Handbook of Genetic Algorithms, Applications, edited by L. Chambers. CRC Press (1995) 143–172. [Google Scholar]
  • Y. Davidor, H.-P. Schwefel and R. Maenner, editors. Parallel Problem Solving from Nature – PPSN III, Jerusalem, Israel. Lecture Notes in Computer Science. Vol. 866. Springer-Verlag, Berlin (1994). [Google Scholar]
  • D. Duvivier, Étude de l’hybridation des méta-heuristiques, Application à un problème d’ordonnancement de type jobshop. Ph.D. thesis, Université du Littoral Côte d’Opale, Laboratoire d’Informatique du Littoral, Calais, France (2000). [Google Scholar]
  • D. Duvivier, P. Preux, E.-G. Talbi, C. Fonlupt and D. Robilliard, The fitness function and its impact on local search methods, in Proceedings of the Conference IEEE Systems, Man and Cybernetics. IEEE Press, San Diego, USA (1998) 2478–2483. [Google Scholar]
  • D. Duvivier, P. Preux and E.-G. Talbi, Climbing up NP-Hard hills, in Parallel Problem Solving from Nature – PPSN IV: International Conference on Evolutionary Computation – The 4th International Conference on Parallel Problem Solving from Nature Berlin, Germany, September 22–26, 1996 Proceedings. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005) 574–583. [Google Scholar]
  • D. Duvivier, O. Roux, V. Dhaevers, N. Meskens and A. Artiba, Multicriteria optimisation and simulation: an industrial application. Ann. Oper. Res. (AOR) 156 (2007) 45–60. [CrossRef] [Google Scholar]
  • D. Duvivier, N. Meskens and M. Ahues, A fast multicriteria decision-making tool for industrial scheduling problems. Int. J. Prod. Econ. (IJPE) 145 (2013) 753–760. [CrossRef] [Google Scholar]
  • D.A. Elvers and L.R. Taube, Deterministic/stochastic assumptions in job shops. Eur. J. Oper. Res. 14 (1983) 89–94. [CrossRef] [Google Scholar]
  • J.M.R.C. Fernandes, S.M. Homayouni and D.B.M.M. Fontes, Energy-efficient scheduling in job shop manufacturing systems: a literature review. Sustainability 14 (2022) 6264. [CrossRef] [Google Scholar]
  • H. Fisher and G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules, in Industrial Scheduling, edited by J.F. Muth and G.L. Thompson. Prentice Hall (1963) 225–251. [Google Scholar]
  • D.B. Fontes, S.M. Homayouni and J.F. Gonçalves, A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources. Eur. J. Oper. Res. 306 (2023) 1140–1157. [CrossRef] [Google Scholar]
  • S.Y. Foo, Y. Takefuji and H. Szu, Scaling properties of neural networks for job-shop scheduling. Neurocomputing 8 (1995) 79–91. [CrossRef] [Google Scholar]
  • K. Gao, Y. Huang, A. Sadollah and L. Wang, A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6 (2020) 237–249. [CrossRef] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA (1979). [Google Scholar]
  • H. Ge, W. Du and F. Qian, A hybrid algorithm based on particle swarm optimization and simulated annealing for job shop scheduling, in Third International Conference on Natural Computation ICNC. Vol. 3. IEEE (2007) 715–719. [CrossRef] [Google Scholar]
  • A. Ghasemi, A. Ashoori and C. Heavey, Evolutionary learning based simulation optimization for stochastic job shop scheduling problems. Appl. Soft Comput. 106 (2021) 107309. [CrossRef] [Google Scholar]
  • B. Giffler and G.L. Thompson, Algorithms for solving production scheduling problems. Oper. Res. 8 (1969) 487–503. [Google Scholar]
  • B.S. Girish, H. Habibullah and J. Dileeplal, Minimizing the total weighted earliness and tardiness for a sequence of operations in job shops. RAIRO: Oper. Res. 56 (2022) 2621–2649. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • F. Glover, Tabu search – Part I. ORSA J. Comput. 1 (1989) 190–206. [CrossRef] [Google Scholar]
  • F. Glover, Tabu search – Part II. ORSA J. Comput. 2 (1989) 4–31. [Google Scholar]
  • D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, (1989). [Google Scholar]
  • J.F. Gonçalves, J.J. de Magalhães Mendes and M.G. Resende, A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167 (2005) 77–95. [CrossRef] [Google Scholar]
  • GOThA. Groupe d’ordonnancement théorique et appliqué. les problèmes d’ordonnancement. Oper. Res. 27 (1993) 77–150. [Google Scholar]
  • R. Graham, E. Lawler, J. Lenstra and A.R. Kann, Optimization and approximation in deterministic sequencing and scheduling theory: a survey. Ann. Discrete Math. 5 (1978) 287–326. [CrossRef] [Google Scholar]
  • J. Grefenstette, editor. Proceedings of the Second International Conference on Genetic Algorithms. MIT, Cambridge, MA, USA; Lawrence Erlbaum Associates: Hillsdale, New-Jersey (1987). [Google Scholar]
  • J. Gu, X. Gu and M. Gu, A novel parallel quantum genetic algorithm for stochastic job shop scheduling. J. Math. Anal. App. 355 (2009) 63–81. [CrossRef] [Google Scholar]
  • J. Gu, M. Gu, C. Cao and X. Gu, A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem. Comput. Oper. Res. 37 (2010) 927–937. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Gu, M. Gu, X. Lu and Y. Zhang, Asymptotically optimal policy for stochastic job shop scheduling problem to minimize makespan. J. Comb. Optim. 36 (2018) 142–161. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Gui, X. Li, L. Gao and J. Xie, An approximate evaluation method for neighbourhood solutions in job shop scheduling problem. IET Collab. Intell. Manuf. 4 (2022) 157–165. [CrossRef] [Google Scholar]
  • J. Hakim, S. Rekiek and K. Reklaoui, Solving the job shop scheduling problem by the multi-hybridization of swarm intelligence techniques. Int. J. Adv. Comput. Sci. App. 13 (2022) 753–764. [Google Scholar]
  • X. Hao, L. Lin, M. Gen and K. Ohno, Effective estimation of distribution algorithm for stochastic job shop scheduling problem. Proc. Comput. Sci. 20 (2013) 102–107. [CrossRef] [Google Scholar]
  • X. Hao, M. Gen, L. Lin and G.A. Suer, Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem. J. Intell. Manuf. 28 (2015) 1–13. [Google Scholar]
  • S.K. Hasan, R. Sarker and D. Essam, Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns. Int. J. Prod. Res. 49 (2011) 4999–5015. [CrossRef] [Google Scholar]
  • A. Hertz and M. Widmer, La méthode tabou appliquée aux problèmes d’ordonnancement. Autom. Prod. Inf. Ind. 29 (1995) 353–378. [Google Scholar]
  • J.H. Holland, Adaptation in Natural and Artificial Systems. Michigan Press University, Ann Arbor, MI (1975). [Google Scholar]
  • J.H. Holland, Adaptation in Natural and Artificial Systems. A Bradford Book, 2nd edition. MIT Press, Cambridge, MA, USA (1992). [Google Scholar]
  • H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167 (2005) 592–623. [CrossRef] [Google Scholar]
  • H.H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications. Morgan-Kaufmann Publishers (2005). [Google Scholar]
  • S.-C. Horng, S.-S. Lin and F.-Y. Yang, Evolutionary algorithm for stochastic job shop scheduling with random processing time. Expert Syst. App. 39 (2012) 3603–3610. [CrossRef] [Google Scholar]
  • K.-L. Huang and C.-J. Liao, Ant colony optimization combined with taboo search for the job shop scheduling problem. Comput. Oper. Res. 35 (2008) 1030–1046. [CrossRef] [MathSciNet] [Google Scholar]
  • A.S. Jain and S. Meeran, Deterministic job-shop scheduling: past, present and future. Eur. J. Oper. Res. 113 (1999) 390–434. [CrossRef] [Google Scholar]
  • A. Jamili, Robust job shop scheduling problem: mathematical models, exact and heuristic algorithms. Expert Syst. App. 55 (2016) 341–350. [CrossRef] [Google Scholar]
  • B. Jarboui, P. Siarry and J. Teghem, editors. Metaheuristics for Production Scheduling. John Wiley & Sons (2013). [CrossRef] [Google Scholar]
  • L.A. Johnson and D.C. Montgomery, Operations Research in Production Planning, Scheduling, and Inventory Control. John Wiley and Sons (1974). [Google Scholar]
  • V. Kannan and S. Ghosh, An evaluation of the interaction between dispatching rules and truncation procedures in job-shop scheduling. Int. J. Prod. Res. 31 (1993) 1637–1654. [CrossRef] [Google Scholar]
  • G.A. Klutke, P.C. Kiessler and M.A. Wortman, A critical look at the bathtub curve. IEEE Trans. Reliab. 52 (2003) 125–129. [CrossRef] [Google Scholar]
  • C.A. Kulthe and Y. Kalshetty, Implementation and evaluation of novel parallel hybrid approach for solving job shop scheduling problem. IJSR 5 (2016) 602–607. [Google Scholar]
  • H.P. Lee and S. Salim, A modified giffler and thompson genetic algorithm on the job shop scheduling problem. Matematika 22 (2006) 91–107. [Google Scholar]
  • D.-M. Lei, Simplified multi-objective genetic algorithms for stochastic job shop scheduling. Appl. Soft Comput. 11 (2011) 4991–4996. [CrossRef] [Google Scholar]
  • D.-M. Lei, Minimizing makespan for scheduling stochastic job shop with random breakdown. Appl. Math. Comput. 218 (2012) 11851–11858. [MathSciNet] [Google Scholar]
  • D.-M. Lei and H.-J. Xiong, Job shop scheduling with stochastic processing time through genetic algorithm, in International Conference on Machine Learning and Cybernetics. Vol. 2. IEEE (2008) 941–946. [Google Scholar]
  • M. Leusin, E. Frazzon, M. Uriona Maldonado, M. Kück and M. Freitag, Solving the job-shop scheduling problem in the Industry 4.0 Era. Technologies 6 (2018) 107. [CrossRef] [Google Scholar]
  • S.-C. Lin, W.F. Punch and E.D. Goodman, Coarse-grain parallel genetic algorithms: categorization and new approach, in Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing. IEEE (1994) 28–37. [Google Scholar]
  • B. Liu, L. Wang and Y.-H. Jin, Hybrid particle swarm optimization for flow shop scheduling with stochastic processing time, in International Conference on Computational and Information Science, Springer (2005) 630–637. [Google Scholar]
  • P. Lopez and F. Roubellat, Production Scheduling. John Wiley & Sons (2013). [Google Scholar]
  • A.S. Manne, On the job-shop scheduling problem. Oper. Res. 8 (1960) 219–223. [CrossRef] [Google Scholar]
  • R. Männer and B. Manderick, editors. Parallel Problem Solving from Nature – PPSN II. Elsevier Science Publishers, Amsterdam (1992). [Google Scholar]
  • A. Masood, Y. Mei, G. Chen and M. Zhang, Many-objective genetic programming for job-shop scheduling, in 2016 IEEE Congress on Evolutionary Computation (CEC) (2016) 209–216. [CrossRef] [Google Scholar]
  • P.V. Matrenin, Improvement of ant colony algorithm performance for the job-shop scheduling problem using evolutionary adaptation and software realization heuristics. Algorithms 16 (2023) 15. [Google Scholar]
  • M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA (1996). [Google Scholar]
  • R. Nakano and T. Yamada, A genetic algorithm applicable to large-scale job-shop problems. in PPSN. Vol 2. Elsevier (1992) 281–290. [Google Scholar]
  • R. Nakano, Y. Davidor and T. Yamada, Optimal population size under constant computation cost, in Parallel Problem Solving from Nature – PPSN III: International Conference on Evolutionary Computation The Third Conference on Parallel Problem Solving from Nature Jerusalem, Israel, October 9–14, 1994. Proceedings 3. Springer Berlin Heidelberg (1994) 130–138. [Google Scholar]
  • A. Neumann, A. Hajji, M. Rekik and R. Pellerin, A didactic review on genetic algorithms for industrial planning and scheduling problems. IFAC-PapersOnLine 55 (2022) 2593–2598. [CrossRef] [Google Scholar]
  • D. Noever and S. Baskaran, Steady-state vs. generational genetic algorithms: a comparison of time complexity and convergence properties. Santa Fe Institute Press, Santa Fe Institute (1992) 1–53. [Google Scholar]
  • E. Nowicki and C. Smutnicki, A fast taboo search algorithm for the job shop problem. Manage. Sci. 42 (1996) 797–813. [CrossRef] [Google Scholar]
  • B.M. Ombuki and M. Ventresca, Local search genetic algorithms for the job shop scheduling problem. Appl. Intell. 21 (2004) 99–109. [CrossRef] [Google Scholar]
  • F. Pei, J. Zhang, S. Mei and H. Song, Critical review on the objective function of flexible job shop scheduling. Mathematical Problems in Engineering (2022). DOI: https://doi.org/10.1155/2022/8147581. [Google Scholar]
  • B. Peng, Z. Lü and T. Cheng, A tabu search/path relinking algorithm to solve the job shop scheduling problem. Comput. Oper. Res. 53 (2015) 154–164. [CrossRef] [MathSciNet] [Google Scholar]
  • M.L. Pinedo, Planning and Scheduling in Manufacturing and Services, 2nd edition. Springer (2009). [CrossRef] [Google Scholar]
  • M. Pinedo and L. Schrage, Stochastic shop scheduling: a survey, in Deterministic and Stochastic Scheduling: Proceedings of the NATO Advanced Study and Research Institute on Theoretical Approaches to Scheduling Problems held in Durham, England, July 6–17, 1981. Springer Netherlands (1982) 181–196. [Google Scholar]
  • P. Pongchairerks, A two-level metaheuristic algorithm for the job-shop scheduling problem. Complexity 2019 (2019). DOI: 10.1155/2019/8683472. [CrossRef] [Google Scholar]
  • R. Qing-dao-er-ji and Y. Wang, A new hybrid genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 39 (2012) 2291–2299. [CrossRef] [MathSciNet] [Google Scholar]
  • C.R. Rao and V. Govindaraju, editors. Handbook of Statistics. Vol. 17. Elsevier (2006). [Google Scholar]
  • V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith, editors. Modern Heuristic Search Methods. J. Wiley & Sons Ltd. (1996). [Google Scholar]
  • C.R. Reeves, editors. Modern Heuristic Techniques for Combinatorial Problems. Advance Topics in Computer Science. Mc Graw-Hill (1995). [Google Scholar]
  • Y. Sang and, J. Tan, Many-objective flexible job shop scheduling problem with green consideration. Energies 15 (2022) 1884. [CrossRef] [Google Scholar]
  • J. Sheldon, B. Akers and J. Friedman, A non-numerical approach to production scheduling problems. J. Oper. Res. Soc. Am. 3 (1955) 429–442. [Google Scholar]
  • S. Shoval and M. Efatmaneshnik, A probabilistic approach to the stochastic job-shop scheduling problem. Proc. Manuf. 21 (2018) 533–540. [Google Scholar]
  • O.V. Shylo and H. Shams, Boosting binary optimization via binary classification: a case study of job shop scheduling. Preprint arXiv:1808.10813 (2018). [Google Scholar]
  • M. Siala, C. Artigues and E. Hebrard, Two clause learning approaches for disjunctive scheduling, in International Conference on Principles and Practice of Constraint Programming. Springer (2015) 393–402. [CrossRef] [Google Scholar]
  • M.L. Smith and A. Seidmann, Due date selection procedures for job-shop simulation. Comput. Ind. Eng. J. 7 (1983) 199–207. [CrossRef] [Google Scholar]
  • K. Steinhöfel, A. Albrecht and C.K. Wong, Two simulated annealing-based heuristics for the job shop scheduling problem. Eur. J. Oper. Res. 118 (1999) 524–548. [CrossRef] [Google Scholar]
  • R. Tadei, F. Della Croce and G. Menga, Advanced search techniques for the job shop problem: a comparison. Oper. Res. 29 (1995) 179–194. [Google Scholar]
  • E.-G. Talbi, Metaheuristics – From Design to Implementation. Wiley (2009). [Google Scholar]
  • E.-G. Talbi, Hybrid Metaheuristics. Studies in Computational Intelligence. Springer, Berlin Heidelberg (2012). [Google Scholar]
  • R. Tavakkoli-Moghaddam, F. Jolai, F. Vaziri, P. Ahmed and A. Azaron, A hybrid method for solving stochastic job shop scheduling problems. Appl. Math. Comput. 170 (2005) 185–206. [MathSciNet] [Google Scholar]
  • R. Thamilselvan and P. Balasubramanie, Integration of genetic algorithm with tabu search for job shop scheduling with unordered subsequence exchange crossover. J. Comput. Sci. 8 (2012) 681. [CrossRef] [Google Scholar]
  • M. van den Akker, K. van Blokland and H. Hoogeveen, Finding robust solutions for the stochastic job shop scheduling problem by including simulation in local search, in International Symposium on Experimental Algorithms. Springer (2013) 402–413. [CrossRef] [Google Scholar]
  • J.J. van Hoorn, Dynamic programming for routing and scheduling: optimizing sequences of decisions. Ph.D. thesis, Vrije Universiteit Amsterdam (2016). [Google Scholar]
  • J.J. van Hoorn, The current state of bounds on benchmark instances of the job-shop scheduling problem. J. Scheduling 21 (2018) 127–128. [CrossRef] [MathSciNet] [Google Scholar]
  • P.J. Van Laarhoven, E.H. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing. Oper. Res. 40 (1992) 113–125. [CrossRef] [MathSciNet] [Google Scholar]
  • H.-M. Voight, W. Ebeling, I. Rechenberg and H.-P. Schwefel, editors. Parallel Problem Solving from Nature – PPSN IV, Berlin, Germany. Lecture Notes in Computer Science. Vol. 1141. Springer-Verlag, Berlin (1996). [Google Scholar]
  • A.M. Waikar, B.R. Sarker and A.M. Lal, A comparative study of some priority dispatching rules under different shop loads. Prod. Planning Control 6 (1995) 301–310. [CrossRef] [Google Scholar]
  • M. Watanabe, K. Ida and M. Gen, A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Comput. Ind. Eng. 48 (2005) 743–752. [CrossRef] [Google Scholar]
  • F. Werner, Genetic algorithms for shop scheduling problems: a survey. Preprint 11 (2011) 31. [Google Scholar]
  • F. Werner, L. Burtseva and Y.N. Sotskov, Special issue on exact and heuristic scheduling algorithms. algorithms 13 (2020) 9. [Google Scholar]
  • D. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput. 8 (1996) 1341–1390. [CrossRef] [Google Scholar]
  • D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1997) 67–82. [Google Scholar]
  • S. Xiao, S. Sun and J. Jin, Surrogate measures for the robust scheduling of stochastic job shop scheduling problems. Energies 10 (2017) 543. [CrossRef] [Google Scholar]
  • H. Xiong, S. Shi, D. Ren and J. Hu, A survey of job shop scheduling problem: the types and models. Comput. Oper. Res. 142 (2022) 105731. [CrossRef] [Google Scholar]
  • E. Xu, Y. Li, Y. Liu, J. Du and X. Gao, Energy saving scheduling strategy for job shop under TOU and tiered electricity price. Alexandria Eng. J. 61 (2022) 459–467. [CrossRef] [Google Scholar]
  • T. Yamada, R. Nakano, Job-shop scheduling, chapter 7, in Genetic Algorithms in Engineering Systems. Vol. 55. The Institution of Electrical Engineers (1997) 134–160. [CrossRef] [Google Scholar]
  • Y. Yoshitomi, A genetic algorithm approach to solving stochastic job-shop scheduling problems. Int. Trans. Oper. Res. 9 (2002) 479–495. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Yoshitomi and R. Yamaguchi, A genetic algorithm and the Monte Carlo method for stochastic job-shop scheduling. Int. Trans. Oper. Res. 10 (2003) 577–596. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Yuan, Y. Yuan and Y. Zhang, A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math. Comput. Simul. 59 (2002) 319–327. [CrossRef] [Google Scholar]
  • R. Yusof, M. Khalid, G.T. Hui, S.M. Yusof and M.F. Othman, Solving job shop scheduling problem using a hybrid parallel micro genetic algorithm. Appl. Soft Comput. 11 (2011) 5782–5792. [CrossRef] [Google Scholar]
  • X. Zhang, Y. Deng, F.T. Chan, P. Xu, S. Mahadevan and Y. Hu, IFSJSP: a novel methodology for the job-shop scheduling problem based on intuitionistic fuzzy sets. Int. J. Prod. Res. 51 (2013) 5100–5119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.