RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Recent developments of operations research and data sciences
Page(s) 1843 - 1876
Published online 14 July 2023
  • S. Abbasi and H. Shirouyehzad, Measuring efficiency of production lines based on maintenance factors; using DEA, in 2011 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE (2011) 784–788. [Google Scholar]
  • A. Aldamak, A. Hatami-Marbini and S. Zolfaghari, Dual frontiers without convexity. Comput. Ind. Eng. 101 (2016) 466–478. [CrossRef] [Google Scholar]
  • J.L.P. Arreola, A.L. Johnson, X.C. Chen and H. Morita, Estimating stochastic production frontiers: a one-stage multivariate semiparametric Bayesian concave regression method. Eur. J. Oper. Res. 287 (2020) 699–711. [CrossRef] [Google Scholar]
  • S.A. Assaf, L.A. Hadidi, M.A. Hassanain and M.F. Rezq, Performance evaluation and benchmarking for maintenance decision making units at petrochemical corporation using a DEA model. Int. J. Adv. Manuf. Technol. 76 (2015) 1957–1967. [CrossRef] [Google Scholar]
  • S. Balak, M.H. Behzadi and A. Nazari, Stochastic copula-DEA model based on the dependence structure of stochastic variables: an application to twenty bank branches. Econ. Anal. Policy 72 (2021) 326–341. [CrossRef] [Google Scholar]
  • R.D. Banker, Maximum likelihood, consistency and data envelopment analysis: a statistical foundation. Manage. Sci. 39 (1993) 1265–1273. [CrossRef] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • R.D. Banker, V.M. Gadh and W.L. Gorr, A Monte Carlo comparison of two production frontier estimation methods: corrected ordinary least squares and data envelopment analysis. Eur. J. Oper. Res. 67 (1993) 332–343. [CrossRef] [Google Scholar]
  • B.D. Borger, K. Kerstens, W. Moesen and J. Vanneste, A non-parametric Free Disposal Hull (FDH) approach to technical efficiency: an illustration of radial and graph efficiency measures and some sensitivity results. Swiss J. Econ. Stat. (SJES) 130 (1994) 647–667. [Google Scholar]
  • A. Charnes and W.W. Cooper, Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11 (1963) 18–39. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Z. Chen, P. Wanke, J.J.M. Antunes and N. Zhang, Chinese airline efficiency under CO2 emissions and flight delays: a stochastic network DEA model. Energy Econ. 68 (2017) 89–108. [CrossRef] [MathSciNet] [Google Scholar]
  • T.J. Cleophas and A.H. Zwinderman, Machine Learning in Medicine – A Complete Overview. Springer, New York (2015). [CrossRef] [Google Scholar]
  • W.D. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative eeficiency of highway maintenance patrols. INFOR: Inf. Syst. Oper. Res. 28 (1990) 113–124. [Google Scholar]
  • W.W. Cooper, H. Deng, Z. Huang and S.X. Li, Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis. J. Oper. Res. Soc. 53 (2002) 1347–1356. [CrossRef] [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, editors. Handbook on Data Envelopment Analysis. Springer, US (2011). [CrossRef] [Google Scholar]
  • E.L. Crow and K. Shimizu, Lognormal Distributions: Theory and Applications, 1st edition. Marcel Dekker, New York (1988). [Google Scholar]
  • Q. Dai, L. Li, X. Lei, Q. An and X. Tang, Considering monopoly maintenance cost for an automobile purchase in China: a DEA-based approach. J. Syst. Sci. Complexity 32 (2019) 1167–1179. [CrossRef] [Google Scholar]
  • M. Davtalab-Olyaie, M. Asgharian and V.P. Nia, Stochastic ranking and dominance in DEA. Int. J. Prod. Econ. 214 (2019) 125–138. [CrossRef] [Google Scholar]
  • D. Deprins, L. Simar and H. Tulkens, Measuring Labor-Efficiency in Post Offices (LIDAM Reprints CORE). Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) (1984). Retrieved from [Google Scholar]
  • J. Duan, N. Xie and L. Li, Optimal buffer allocation in multi-product repairable production lines based on multi-state reliability and structural complexity. SII Trans. Int. Inf. Syst. 14 (2020) 1579–1602. [Google Scholar]
  • M.-C. Fitouhi, M. Nourelfath and S.B. Gershwin, Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance. Reliab. Eng. Syst. Saf. 166 (2017) 61–72. [CrossRef] [Google Scholar]
  • M.R. Ghasemi, J. Ignatius, S. Lozano, A. Emrouznejad and A. Hatami-Marbini, A fuzzy expected value approach under generalized data envelopment analysis. Knowl.-Based Syst. 89 (2015) 148–159. [Google Scholar]
  • M.C. Gouveia, L.C. Dias, C.H. Antunes, J. Boucinha and C.F. Inácio, Benchmarking of maintenance and outage repair in an electricity distribution company using the value-based DEA method. Omega 53 (2015) 104–114. [CrossRef] [Google Scholar]
  • A. Hatami-Marbini and M. Toloo, An extended multiple criteria data envelopment analysis model. Expert Syst. App. 73 (2017) 201–219. [CrossRef] [Google Scholar]
  • J.L. Hougaard and T. Baležentis, Fuzzy efficiency without convexity. Fuzzy Sets Syst. 255 (2014) 17–29. [CrossRef] [Google Scholar]
  • Z. Huang and S.X. Li, Dominance stochastic models in data envelopment analysis. Eur. J. Oper. Res. 95 (1996) 390–403. [CrossRef] [Google Scholar]
  • M. Izadikhah, A fuzzy stochastic slacks-based data envelopment analysis model with application to healthcare efficiency. Healthcare Anal. 2 (2022) 100038. [CrossRef] [Google Scholar]
  • M. Izadikhah and R. Farzipoor Saen, Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Comput. Oper. Res. 100 (2018) 343–367. [Google Scholar]
  • M. Izadikhah and R. Farzipoor Saen, Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry. Ann. Oper. Res. (2021). DOI: 10.1007/s10479-021-04160-7. [Google Scholar]
  • M. Izadikhah, M. Ehsanifar and S. Malekian, A Chance-Constrained DEA model with random input and output data: considering maintenance groups of Iranian Aluminum Company. Theory Approx. App. 12 (2018) 11–27. [Google Scholar]
  • M. Izadikhah, M. Azadi, M. Toloo and F.K. Hussain, Sustainably resilient supply chains evaluation in public transport: a fuzzy chance-constrained two-stage DEA approach. Appl. Soft Comput. 113 (2021) 107879. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, R.K. Matin and A.H. Vencheh, On FDH efficiency analysis with interval data. Appl. Math. Comput. 159 (2004) 47–55. [MathSciNet] [Google Scholar]
  • T. Jiang and C. Yu, Analysis and improvement of equipment maintenance management fee allocation efficiency based on DEA theory, in 2021 International Conference on E-Commerce and E-Management (ICECEM). IEEE, Dalian, China (2021) 99–104. [Google Scholar]
  • J. Jin, D. Zhou and P. Zhou, Measuring environmental performance with stochastic environmental DEA: the case of APEC economies. Econ. Modell. 38 (2014) 80–86. [CrossRef] [Google Scholar]
  • S. Jradi and J. Ruggiero, Stochastic data envelopment analysis: a quantile regression approach to estimate the production frontier. Eur. J. Oper. Res. 278 (2019) 385–393. [CrossRef] [Google Scholar]
  • S. Jradi, C.F. Parmeter and J. Ruggiero, Quantile estimation of stochastic frontiers with the normal-exponential specification. Eur. J. Oper. Res. 295 (2021) 475–483. [CrossRef] [Google Scholar]
  • C. Kao and S.-T. Liu, Stochastic efficiency measures for production units with correlated data. Eur. J. Oper. Res. 273 (2019) 278–287. [CrossRef] [Google Scholar]
  • R. Khanjani Shiraz, M. Tavana, D. Di Caprio and J. Vakili, An improved non-convex model for discriminating efficient units in free disposal hull. Measurement: J. Int. Measurement Confederation 69 (2015) 222–235. [CrossRef] [Google Scholar]
  • R. Khanjani Shiraz, H. Fukuyama, M. Tavana and D. Di Caprio, An integrated data envelopment analysis and free disposal hull framework for cost-efficiency measurement using rough sets. Appl. Soft Comput. J. 46 (2016) 204–219. [CrossRef] [Google Scholar]
  • M. Kheradranjbar, M. Mohammadi and S. Rafiee, Evaluating the efficiency of building repair and maintenance system using data envelopment analysis method. J. Struct. Constr. Eng. 8 (2022) 252–269. [Google Scholar]
  • M. Khodabakhshi and M. Asgharian, An input relaxation measure of efficiency in stochastic data envelopment analysis. Appl. Math. Modell. 33 (2009) 2010–2023. [CrossRef] [Google Scholar]
  • M. Khodadadipour, A. Hadi-Vencheh, M.H. Behzadi and M. Rostamy-Malkhalifeh, Undesirable factors in stochastic DEA cross-efficiency evaluation: an application to thermal power plant energy efficiency. Econ. Anal. Policy 69 (2021) 613–628. [CrossRef] [Google Scholar]
  • M. Khoveyni, R. Eslami and G.L. Yang, Data envelopment analysis in the absence of convexity: specifying efficiency status and estimating returns to scale. J. Comput. Appl. Math. 304 (2016) 172–200. [CrossRef] [MathSciNet] [Google Scholar]
  • K.C. Land, C.A.K. Lovell and S. Thore, Chance-constrained data envelopment analysis. Manage. Decis. Econ. 14 (1993) 541–554. [CrossRef] [Google Scholar]
  • L. Li, J. Hang, Y. Gao and C. Mu, Using an integrated group decision method based on SVM, TFN-RS-AHP, and TOPSIS-CD for cloud service supplier selection. Math. Probl. Eng. 2017 (2017) 3143502. [Google Scholar]
  • Y.-K. Lin, C.-F. Huang and P.-C. Chang, System reliability evaluation of a touch panel manufacturing system with defect rate and reworking. Reliab. Eng. Syst. Safety 118 (2013) 51–60. [CrossRef] [Google Scholar]
  • P. Mitropoulos, M.A. Talias and I. Mitropoulos, Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: an application to Greek public hospitals. Eur. J. Oper. Res. 243 (2015) 302–311. [CrossRef] [Google Scholar]
  • N. Nalpas, L. Simar and A. Vanhems, Portfolio selection in a multi-moment setting: a simple Monte-Carlo- FDH algorithm. Eur. J. Oper. Res. 263 (2017) 308–320. [CrossRef] [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Chance constrained efficiency evaluation. Manage. Sci. 41 (1995) 442–457. [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis: a review. Eur. J. Oper. Res. 251 (2016) 2–21. [Google Scholar]
  • T. O’Neal, H. Min, D. Cherobini and S.-J. Joo, Benchmarking aircraft maintenance performances using data envelopment analysis. Int. J. Quality Reliability Manage. 38 (2021) 1328–1341. [CrossRef] [Google Scholar]
  • P. Peykani, E. Mohammadi and A. Emrouznejad, An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms. Expert Syst. App. 166 (2021) 113938. [CrossRef] [Google Scholar]
  • E. Pourjavad, H. Shirouyehzad and A. Shahin, Integration of ANP and DEA methods for evaluating efficiency of maintenance strategies. Int. J. Manuf. Technol. Manage. 34 (2020) 311–330. [CrossRef] [Google Scholar]
  • T.V. Puyenbroeck, Some remarks on modified FDH. J. Prod. Anal. 9 (1998) 81–94. [CrossRef] [Google Scholar]
  • S.C. Ray, Data Envelopment Analysis, Theory and Techniques for Economics and Operations Research, 1st edition. Cambridge University Press, New York (2004). [Google Scholar]
  • A.J. Ruiz-Torres and F.J. López, Using the FDH formulation of DEA to evaluate a multi-criteria problem in parallel machine scheduling. Comput. Ind. Eng. 47 (2004) 107–121. [CrossRef] [Google Scholar]
  • J.K. Sengupta, Efficiency measurement in stochastic input-output systems. Int. J. Syst. Sci. 13 (1982) 273–287. [Google Scholar]
  • J.K. Sengupta, Data envelopment analysis for efficiency measurement in the stochastic case. Comput. Oper. Res. 14 (1987) 117–129. [CrossRef] [Google Scholar]
  • M. Sheikhalishahi, V. Ebrahimipour and M.H. Farahani, An integrated GA-DEA algorithm for determining the most effective maintenance policy for a k-out-of-n problem. J. Intell. Manuf. 25 (2014) 1455–1462. [CrossRef] [Google Scholar]
  • L. Simar and P.W. Wilson, Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Manage. Sci. 44 (1998) 49–61. [CrossRef] [Google Scholar]
  • L. Simar and P.W. Wilson, A general methodology for bootstrapping in non-parametric frontier models. J. Appl. Stat. 27 (2000) 779–802. [Google Scholar]
  • L. Simar and V. Zelenyuk, Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis. Eur. J. Oper. Res. 284 (2020) 1002–1015. [CrossRef] [Google Scholar]
  • G.W. Snedecor and W.G. Cochran, Statistical Methods, 8th edition. Iowa State University Press, Ames, Iowa (1989). [Google Scholar]
  • M. Soleimani-Damaneh and M. Reshadi, A polynomial-time algorithm to estimate returns to scale in FDH models. Comput. Oper. Res. 34 (2007) 2168–2176. [CrossRef] [Google Scholar]
  • M. Soltani and A. Hadi-Vencheh, A DEA approach for investigating the effect of computerized maintenance management system on staff productivity: a case Study. J. New Res. Math. 2 (2016) 25–36. [Google Scholar]
  • R.F. Stapelberg, Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design, 1st edition. Springer-Verlag, London (2009). [Google Scholar]
  • S. Sun and S.C. Hu, Discriminating efficient units using MAJ FDH. Appl. Math. Comput. 215 (2009) 3116–3123. [Google Scholar]
  • I.M. Tavakoli and A. Mostafaee, Free disposal hull efficiency scores of units with network structures. Eur. J. Oper. Res. 277 (2019) 1027–1036. [CrossRef] [Google Scholar]
  • M. Tavana, R. Khanjani Shiraz, A. Hatami-Marbini, P.J. Agrell and K. Paryab, Chance-constrained DEA models with random fuzzy inputs and outputs. Knowl.-Based Syst. 52 (2013) 32–52. [Google Scholar]
  • M. Tavana, R. Khanjani Shiraz and A. Hatami-Marbini, A new chance-constrained DEA model with birandom input and output data. J. Oper. Res. Soc. 65 (2014) 1824–1839. [CrossRef] [Google Scholar]
  • M. Tavassoli, R.F. Saen and D.M. Zanjirani, Assessing sustainability of suppliers: a novel stochastic-fuzzy DEA model. Sustainable Prod. Consumption 21 (2020) 78–91. [CrossRef] [Google Scholar]
  • M.G. Tsionas, Optimal combinations of stochastic frontier and data envelopment analysis models. Eur. J. Oper. Res. 294 (2021) 790–800. [CrossRef] [Google Scholar]
  • E.G. Tsionas and E. Papadakis, A Bayesian approach to statistical inference in stochastic DEA. Omega 38 (2010) 309–314. [CrossRef] [Google Scholar]
  • H. Tulkens, On FDH efficiency analysis: some methodological issues and applications to retail banking, courts, and urban transit. J. Prod. Anal. 4 (1993) 183–210. [CrossRef] [Google Scholar]
  • J. Van den Bergh, P. De Bruecker, J. Beliën, L. De Boeck and E. Demeulemeester, A three-stage approach for aircraft line maintenance personnel rostering using MIP, discrete event simulation and DEA. Expert Syst. Appl. 40 (2013) 2659–2668. [CrossRef] [Google Scholar]
  • L.C. Wang and H.Y. Tsai, Evaluation of highway maintenance performance using Data Envelopment Analysis (DEA) in Taiwan. J. Marine Sci. Technol. 17 (2009) 145–155. [Google Scholar]
  • Z. Wang, Q. Liu and B. Zhang, What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA). Renew. Sustainable Energy Rev. 161 (2022) 112392. [CrossRef] [Google Scholar]
  • P.F. Wanke, Efficiency of Brazil’s airports: evidences from bootstrapped DEA and FDH estimates. J. Air Transp. Manage. 23 (2012) 47–53. [CrossRef] [Google Scholar]
  • K.Y. Wei, J.H. Peng, J.D. Lin and C.R. Ciou, Data envelopment analysis used in Taiwan performance evaluation of highway maintenance. Adv. Mater. Res. 250–253 (2011) 1675–1680. [CrossRef] [Google Scholar]
  • D. Wu and C.-G. Lee, Stochastic DEA with ordinal data applied to a multi-attribute pricing problem. Eur. J. Oper. Res. 207 (2010) 1679–1688. [CrossRef] [Google Scholar]
  • C. Wu, Y. Li, Q. Liu and K. Wang, A stochastic DEA model considering undesirable outputs with weak disposability. Math. Comput. Modell. 58 (2013) 980–989. [CrossRef] [Google Scholar]
  • M. Xie, K.-L. Poh and Y.-S. Dai, Computing System Reliability, 1st edition. Springer, US, New York (2004). [Google Scholar]
  • Y. Zha, L. Zhao and Y. Bian, Measuring regional efficiency of energy and carbon dioxide emissions in China: a chance constrained DEA approach. Comput. Oper. Res. 66 (2016) 351–361. [CrossRef] [Google Scholar]
  • Z. Zhou, L. Lin, H. Xiao, C. Ma and S. Wu, Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comput. Ind. Eng. 110 (2017) 404–412. [CrossRef] [Google Scholar]
  • Z. Zhou, W. Sun, H. Xiao, Q. Jin and W. Liu, Stochastic leader–follower DEA models for two-stage systems. J. Manage. Sci. Eng. 6 (2021) 413–434. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.