Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 2067 - 2085
DOI https://doi.org/10.1051/ro/2023079
Published online 01 August 2023
  • C. Arbib, F. Marinelli and F. Pezzella, An LP-based tabu search for batch scheduling in a cutting process with finite buffers. Int. J. Prod. Econ. 136 (2012) 287–296. [CrossRef] [Google Scholar]
  • C. Arbib, F. Marinelli and P. Ventura, One-dimensional cutting stock with a limited number of open stacks: bounds and solutions from a new integer linear programming model. Int. Trans. Oper. Res. 23 (2016) 47–63. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Becceneri, H.H. Yanasse and N.Y. Soma, A method for solving the minimization of the maximum number of open stacks problem within a cutting process. Comput. Oper. Res. 31 (2004) 2315–2332. [CrossRef] [Google Scholar]
  • G. Belov and G. Scheithauer, Setup and open-stacks minimization in one-dimensional stock cutting. INFORMS J. Comput. 19 (2007) 27–35. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Catanzaro, L. Golveia and M. Labbé, Improved integer linear programming formulations for the job sequencing and tool switching problem. Eur. J. Oper. Res. 244 (2015) 766–777. [CrossRef] [Google Scholar]
  • J.F. Côté and M. Iori, The meet-in-the-middle principle for cutting and packing problems. INFORMS J. Comput. 30 (2018) 646–661. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Delorme and M. Iori, Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems. INFORMS J. Comput. 32 (2020) 101–119. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Faggioli and C.A. Bentivoglio, Heuristic and exact methods for the cutting sequencing problem. Eur. J. Oper. Res. 110 (1998) 564–575. [CrossRef] [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9 (1961) 849–859. [CrossRef] [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem – part II. Oper. Res. 11 (1963) 863–888. [CrossRef] [Google Scholar]
  • P.C. Gilmore and R.E. Gomory, Multi-stage cutting stock problems of two and more dimensions. Oper. Res. 13 (1965) 94–120. [CrossRef] [Google Scholar]
  • L.V. Kantorovich, Mathematical methods of organizing and planning production. Manage. Sci. 6 (1960) 366–422. [CrossRef] [Google Scholar]
  • G. Laporte, J.J. Salazar-González and F. Semet, Exact algorithms for the job sequencing and tool switching problem. IIE Trans. 36 (2004) 37–45. [CrossRef] [Google Scholar]
  • R. Macedo, C. Alves and J.M. Valério de Carvalho, Arc-flow model for the two-dimensional guillotine cutting stock problem. Comput. Oper. Res. 37 (2010) 991–1001. [CrossRef] [Google Scholar]
  • M. Martin, H.H. Yanasse and M.J. Pinto, Mathematical models for the minimization of open stacks problem. Int. Trans. Oper. Res. 29 (2022) 2944–2967. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Martin, H.H. Yanasse, M.O. Santos and R. Morabito, Models for two- and three-stage two-dimensional cutting stock problems with a limited number of open stacks. Int. J. Prod. Res. 61 (2023) 2895–2916. [CrossRef] [Google Scholar]
  • C.E. Miller, A.W. Tucker and R.A. Zemlin, Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7 (1960) 326–329. [CrossRef] [Google Scholar]
  • K.C. Poldi and M.N. Arenales, Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths. Comput. Oper. Res. 36 (2009) 2074–2081. [CrossRef] [Google Scholar]
  • C.S. Tang and E.V. Denardo, Models arising from a flexible manufacturing machine, part I: minimization of the number of the tool switches. Oper. Res. 36 (1988) 767–777. [CrossRef] [Google Scholar]
  • J.M. Valério de Carvalho, Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 86 (1999) 629–659. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Wäscher, H. Haußner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183 (2007) 1109–1130, 12. [CrossRef] [Google Scholar]
  • L.A. Wolsey, Valid inequalities, covering problems and discrete dynamic programs. Ann. Discrete Math. 1 (1977) 527–538. [CrossRef] [Google Scholar]
  • H.H. Yanasse, On a pattern sequencing problem to minimize the maximum number of open stacks. Eur. J. Oper. Res. 100 (1997) 454–463. [CrossRef] [Google Scholar]
  • H.H. Yanasse and M.J.P. Lamosa, An integrated cutting stock and sequencing problem. Eur. J. Oper. Res. 183 (2007) 1353–1370. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.