Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 1733 - 1743
DOI https://doi.org/10.1051/ro/2023091
Published online 11 July 2023
  • A. Allahverdi, The tricriteria two-machine flowshop scheduling problem. Int. Trans. Oper. Res. 8 (2001) 403–425. [Google Scholar]
  • A. Allahverdi, A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness. Comput. Oper. Res. 31 (2004) 157–180. [Google Scholar]
  • A. Allahverdi, Three-machine flowshop scheduling problem to minimize makespan with bounded setup and processing times. J. Chin. Inst. Ind. Eng. 25 (2008) 52–61. [Google Scholar]
  • A. Allahverdi, A survey of scheduling problems with uncertain interval/bounded processing/setup times. J. Proj. Manag. 7 (2022) 255–264. [Google Scholar]
  • M. Allahverdi, An improved algorithm to minimize the total completion time in a two-machine no-wait flowshop with uncertain setup times. J. Project Manag. 7 (2022) 1–12. [CrossRef] [Google Scholar]
  • M. Allahverdi, A substantially improved new algorithm for flowshop scheduling problem with uncertain processing times. Int. J. Eng. Res. Develop. 14 (2022) 155–163. [Google Scholar]
  • M. Allahverdi, Significantly improved dominance relation for no-wait flowshop scheduling problems with uncertain setup times. Hacet. J. Math. Stat. 52 (2023) 487–498. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Allahverdi and A. Allahverdi, Algorithms for four-machine flowshop scheduling problem with uncertain processing times to minimize makespan. RAIRO: OR 54 (2020) 529–553. [Google Scholar]
  • A. Allahverdi and F. Al-Anzi, A branch-and-bound algorithm for three-machine flowshop scheduling problem to minimize total completion time with separate setup times. Eur. J. Oper. Res. 169 (2006) 767–780. [CrossRef] [Google Scholar]
  • A. Allahverdi and H. Aydilek, Heuristics for the two-machine flowshop scheduling problem to minimize makespan with bounded processing times. Int. J. Prod. Res. 48 (2010) 6367–6385. [CrossRef] [Google Scholar]
  • A. Allahverdi and H. Aydilek, Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times. Comput. Math. Appl. 60 (2010) 1374–1384. [Google Scholar]
  • A. Allahverdi and Y. Sotskov, Two-machine flowshop minimum length scheduling problem with random and bounded processing times. Int. Trans. Oper. Res. 10 (2003) 65–76. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Al-Anzi and A. Allahverdi, An artifical immune system heuristic for two-stage multi-machine assembly scheduling problem to minimize total completion time. J. Manuf. Syst. 32 (2013) 825–830. [CrossRef] [Google Scholar]
  • H. Aydilek and A. Allahverdi, Two-machine flowshop scheduling problem with bounded processing times to minimize total completion time. Comput. Math. Appl. 59 (2010) 684–693. [Google Scholar]
  • H. Aydilek and A. Allahverdi, A polynomial time heuristic for the two-machine flowshop scheduling problem with setup times and random processing times. Appl. Math. Model. 37 (2013) 7164–7173. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Increasing the profitability and competitiveness in a production environment with random and bounded setup times. Int. J. Prod. Res. 51 (2013) 106–117. [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan. Int. J. Prod. Res. 53 (2015) 2803–2819. [Google Scholar]
  • A. Aydilek, H. Aydilek and A. Allahverdi, Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times. Appl. Math. Model. 45 (2017) 982–996. [Google Scholar]
  • H. Aydilek, A. Aydilek, M. Allahverdi and A. Allahverdi, More effective heuristics for a two-machine no-wait flowshop to minimize maximum lateness. Int. J. Ind. Eng. Comput. 13 (2022) 543–556. [Google Scholar]
  • K. Baker and D. Trietsch, Principles of Sequencing and Scheduling. John Wiley & Sons (2019). [Google Scholar]
  • H.Y. Fuchigami and S. Rangel, A survey of case studies in production scheduling: analysis and perspectives. J. Comput. Sci. 25 (2018) 425–436. [Google Scholar]
  • M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129. [CrossRef] [MathSciNet] [Google Scholar]
  • E.M. Gonzalez-Neira, D. Ferone, S. Hatami and A.A. Juan, A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 79 (2017) 23–36. [Google Scholar]
  • S.M. Johnson, Optimal two and three-stage production schedules with setup times included. Nav. Res. Logist. Quart. 1 (1954) 61–68. [CrossRef] [Google Scholar]
  • T. Keshavarz and N. Salmasi, Makespan minimization in flexible flowshop sequencedependent group scheduling problem. Int. J. Prod. Res. 51 (2013) 6182–6193. [CrossRef] [Google Scholar]
  • P. Kouvelis and G. Yu, Robust Discrete Optimization and its Applications. Kluwer Academic Publisher (1997). [Google Scholar]
  • N. Leshchenko and Y. Sotskov, A dominant schedule for the uncertain two-machine shop-scheduling problem, in Proc. of XII International Conference -Knowledge- Dialogue-Solution (2006) 291–297. [Google Scholar]
  • N. Leshchenko and Y. Sotskov, Realization of an optimal schedule for the twomachine flow-shop with interval job processing times. Int. J. Inf. Theor. Appl. 14 (2007) 182–189. [Google Scholar]
  • N.M. Matsveichuk, Y.N. Sotskov and F. Werner, Partial job order for solving the two machine flow-shop minimum-length problem with uncertain processing times. IFAC Proceedings 42 (2009) 1517–1522. [Google Scholar]
  • C.T. Ng, N.M. Matsveichuk, Y.N. Sotskov and T.C.E. Cheng, Two-machine flow-shop minimum-length scheduling with interval processing times. Asia-Pac. J. Oper. Res. 26 (2009) 715–734. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Seidgar, M. Kiani and M. Abedi, An efficient imperialist competitive algorithm for scheduling in the two-stage assembly flow shop problem. Int. J. Prod. Res. 52 (2014) 1240–1256. [CrossRef] [Google Scholar]
  • Y.N. Sotskov, A. Allahverdi and T.C. Lai, Flowshop scheduling problem to minimize total completion time with random and bounded processing times. J. Oper. Res. Soc. 55 (2004) 277–286. [Google Scholar]
  • Y.N. Sotskov, N.M. Matsveichuk, A.A. Kasiankou and F. Werner, Time management based on two-machine flowshop scheduling with uncertain job processing times. Int. J. Inf. Technol. Knowl. 8 (2014) 212–224. [Google Scholar]
  • P. Tayanithi, S. Manivannan and J. Banks, A knowledge-based simulation architecture to analyze interruptions in a flexible manufacturing system. J. Manuf. Syst. 11 (1992) 195–214. [Google Scholar]
  • K. Wang and S.H. Choi, A decomposition-based approach to flexible flow shop scheduling under machine breakdown. Int. J. Prod. Res. 50 (2012) 215–234. [Google Scholar]
  • T. Yoshida and K. Hitomi, Optimal two-state production scheduling with setup times separated. AIIE Trans. 11 (1979) 261–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.