RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Graphs, Combinatorics, Algorithms and Optimization
Page(s) 2757 - 2767
Published online 24 October 2023
  • H. Bodlaender, On the complexity of some coloring games, Graph-Theoretic Concepts in Computer Science. In Vol 484 of Lecture Notes in Computer Science (1991) 30–40. [CrossRef] [Google Scholar]
  • S. Charmaine, The Game Chromatic Number of Some Families of Cartesian Product Graphs. AKCE Int. J. Graphs Comb. 6 (2009) 315–327. [MathSciNet] [Google Scholar]
  • C. Dunn, V. Larsen, K. Lindke, T. Retter and D. Toci, The game chromatic number of trees and forests. Discrete Math. Theor. Comput. Sci. 2 (2015) 31–48. [Google Scholar]
  • U. Faigle, W. Kern, H. Kierstead and W. Trotter, On the game chromatic number of some classes of graphs. Ars Combi. (1993) 143–150. [Google Scholar]
  • A. Furtado, S. Dantas, C. de Figueiredo and S. Gravier, The game chromatic number of caterpillars. Proceedings of 18th Latin-Iberoamerican Conference on Operations Research (CLAIO 2016) (2016). [Google Scholar]
  • A. Furtado, S. Dantas, C. de Figueiredo and S. Gravier, On Caterpillars of game chromatic number 4, Proceedings of Lagos 2019, the tenth Latin and American algorithms, graphs and optimization symposium (LAGOS 2019). Electron. Notes Theor. Comput. Sci. 346 (2019) 461–472. [CrossRef] [Google Scholar]
  • M. Gardner, Mathematical Games, Scientific American. Vol. 23 (1981). [Google Scholar]
  • D. Guan and X. Zhu, Game chromatic number of outerplanar graphs. J. Graph Theory 30 (1999) 67–70. [CrossRef] [MathSciNet] [Google Scholar]
  • H.A. Kierstead and A.V. Kostochka, Efficient graph packing via game colouring. Comb. Probab. Comput. 18 (2009) 765–774. [CrossRef] [Google Scholar]
  • A. Raspaud and W. Jiaojiao, Game chromatic number of toroidal grids. Inf. Process. Lett. 109 (2009) 1183–1186. [CrossRef] [Google Scholar]
  • X. Zhu, Game coloring of planar graphs. J. Comb. Theory Ser. B 75 (1999) 245–258. [Google Scholar]
  • X. Zhu, The game coloring number of pseudo partial k-trees. Discrete Math. 215 (2000) 245–262. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.