Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
|
|
---|---|---|
Page(s) | 3223 - 3236 | |
DOI | https://doi.org/10.1051/ro/2023181 | |
Published online | 22 December 2023 |
- H. Ahmed, A. Saleh, R. Ismail and A. Alameri, Computational analysis for eccentric neighborhood Zagreb indices and their significance. Heliyon 9 (2023) e17998. [CrossRef] [PubMed] [Google Scholar]
- A.M. Albalahi and A. Ali, On the inverse symmetric division deg index of unicyclic graphs. Computation 10 (2022) 181. [CrossRef] [Google Scholar]
- A. Ali, S. Elumalai and T. Mansour, On the symmetric division deg index of molecular graphs. MATCH Commun. Math. Comput. Chem. 83 (2020) 205–220. [Google Scholar]
- F.K. Bell, D. Cvetković, P. Rowlinson and S.K. Simić, Graphs for which the least eigenvalue is minimal, I. Linear Algebra Appl. 429 (2008) 234–241. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph Theory. Springer (2008). [CrossRef] [Google Scholar]
- K.C. Das, Maximizing the sum of the squares of the degrees of a graph. Discrete Math. 285 (2004) 57–66. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das, On geometric-arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 64 (2010) 619–630. [MathSciNet] [Google Scholar]
- K.C. Das, On comparing Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 63 (2010) 433–440. [MathSciNet] [Google Scholar]
- K.C. Das and S.-G. Lee, On the conjecture of the Estrada index. Linear Algebra Appl. 431 (2009) 1351–1359. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das, M. Matejić, E. Milovanović and I. Milovanović, Bounds for symmetric division deg index of graphs. Filomat 33 (2019) 683–698. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das, S.A. Mojallal and S. Sun, On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs. Linear Algebra Appl. 569 (2019) 175–194. [CrossRef] [MathSciNet] [Google Scholar]
- K.C. Das, A. Alazemi and M. Andelic, On energy and Laplacian energy of chain graphs. Discrete Appl. Math. 284 (2020) 391–400. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Du, B. Zhou and N. Trinajstić, On geometric-arithemetic indices of (molecular) trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 66 (2011) 681–697. [MathSciNet] [Google Scholar]
- R. Ehrenborg and S.V. Willigenburg, Enumerative properties of Ferrers graphs. Discrete Comput. Geom. 32 (2004) 481–492. [CrossRef] [MathSciNet] [Google Scholar]
- E. Estrada, Characterization of 3D molecular structure. Chem. Phys. Lett. 319 (2000) 713–718. [CrossRef] [Google Scholar]
- E. Estrada, Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett. 463 (2008) 422–425. [CrossRef] [Google Scholar]
- E. Estrada and J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks. Phys. Rev. E 71 (2005) 056103. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes. Indian J. Chem. 37A (1998) 849–855. [Google Scholar]
- S. Fajtlowicz, On conjectures of grafti II. Congr. Numer. 60 (1987) 189–197. [MathSciNet] [Google Scholar]
- B. Furtula, A. Graovac and D. Vukičević, Atom-bond connectivity index of trees. Discrete Appl. Math. 157 (2009) 2828–2835. [CrossRef] [MathSciNet] [Google Scholar]
- B. Furtula, K.C. Das and I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor. Int. J. Quantum Chem. 118 (2018) e25659. [CrossRef] [Google Scholar]
- M. Ghorbani, S. Zangi and N. Amraei, New results on symmetric division deg index. J. Appl. Math. Comput. 65 (2021) 161–176. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972) 535–538. [CrossRef] [Google Scholar]
- H. Hosoya, A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339. [CrossRef] [Google Scholar]
- X. Li, Y. Shi and I. Gutman, Graph Energy. Springer, New York (2012). [CrossRef] [Google Scholar]
- N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics. North Holland, New York (1995). [Google Scholar]
- D. Maji and G. Ghorai, Computing F-index, coindex and Zagreb polynomials of the kth generalized transformation graphs. Heliyon 6 (2020) e05781. [CrossRef] [PubMed] [Google Scholar]
- J. Radon, Über die absolut additiven Mengenfunktionen. Wiener-Sitzungsber. (IIa) 122 (1913) 1295–1438. [Google Scholar]
- M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97 (1975) 6609–6615. [CrossRef] [Google Scholar]
- D. Vukičević and M. Gasperov, Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 83 (2010) 243–260. [Google Scholar]
- H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947) 17–20. [CrossRef] [PubMed] [Google Scholar]
- K. Xu, J. Li and Z. Luo, Comparative results between the number of subtrees and Wiener index of graphs. RAIRO-Oper. Res. 56 (2022) 2495–2511. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.