Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 229 - 252
DOI https://doi.org/10.1051/ro/2023126
Published online 08 February 2024
  • L. Rabelo, M. Helal, C. Lertpattarapong, R. Moraga and A.T. Sarmiento, Using system dynamics, neural nets, and eigenvalues to analyse supply chain behavior: a case study. Int. J. Prod. Res. 46 (2008) 51–71. [CrossRef] [Google Scholar]
  • D.R. Towill, Dynamic analysis of an inventory and order based production control system. Int. J. Prod. Res. 20 (1982) 671–687. [CrossRef] [Google Scholar]
  • R. Mason-Jones, M.M. Naim and D.R. Towill, The impact of pipeline control on supply chain dynamics. Int. J. Logistics Manage. 8 (1997) 47–62. [CrossRef] [Google Scholar]
  • S.M. Disney and D.R. Towill, A procedure for the optimization of the dynamic response of a vendor managed inventory system. Comput. Ind. Eng. 43 (2002) 27–58. [CrossRef] [Google Scholar]
  • X. Wang, S.M. Disney and J. Wang, Stability analysis of constrained inventory systems with transportation delay. Eur. J. Oper. Res. 223 (2012) 86–95. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Li, X. Wang and Z. Wang, System dynamics model for VMI&TPL integrated supply chains. Discrete Dyn. Nat. Soc. 2013 (2013) 1–17. DOI: 10.1155/2013/178713. [Google Scholar]
  • E. Kim, Centralized admission and production control in a two-stage supply chain with single component and customized products. Int. J. Prod. Econ. 140 (2012) 530–540. [CrossRef] [Google Scholar]
  • A. Göksu, U.E. Kocamaz and Y. Uyaroğlu, Synchronization and control of chaos in supply chain management. Comput. Ind. Eng. 86 (2015) 107–115. [CrossRef] [Google Scholar]
  • T.N. Cuong, X. Xu, S.D. Lee and S.S. You, Dynamic analysis and management optimization for maritime supply chains using nonlinear control theory. J. Int. Maritime Saf. Environ. Affairs Shipping 4 (2020) 48–55. [CrossRef] [Google Scholar]
  • H.B. Hwarng and N. Xie, Understanding supply chain dynamics: a chaos perspective. Eur. J. Oper. Res. 184 (2008) 1163–1178. [CrossRef] [Google Scholar]
  • J.S. Thomsen, E. Mosekilde and J.D. Sterman, Hyperchaotic phenomena in dynamic decision making. Syst. Anal. Model. Simul. 9 (1992) 137–156. [Google Scholar]
  • J.W. Forrester, Industrial dynamics – a major breakthrough for decision makers. Harvard Bus. Rev. 36 (1958) 37–66. [Google Scholar]
  • J. Wikner, M.M. Naim and D.R. Towill, The system simplification approach in understanding the dynamic behaviour of a manufacturing supply chain. J. Syst. Eng. 2 (1992) 164–178. [Google Scholar]
  • D. Berry, M.M. Naim and D.R. Towill, Business process re-engineering an electronic products supply chain. IEE Proc.-Sci. Meas. Technol. 142 (1995) 395–403. [CrossRef] [Google Scholar]
  • S. Minegishi and D. Thiel, System dynamics modeling and simulation of a particular food supply chain. Simul. Pract. Theory 8 (2000) 321–339. [CrossRef] [Google Scholar]
  • J.K. Sagawa and G. Mušič, Towards the use of bond graphs for manufacturing control: design of controllers. Int. J. Prod. Econ. 214 (2019) 53–72. [CrossRef] [Google Scholar]
  • H. Al-Kharrazi, C. Cole and W. Guo, Analysing the impact of different classical controller strategies on the dynamics performance of production-inventory systems using state space approach. J. Modell. Manage. 13 (2018) 211–235. [CrossRef] [Google Scholar]
  • V.L. Spiegler and M.M. Naim, Investigating sustained oscillations in nonlinear production and inventory control models. Eur. J. Oper. Res. 261 (2017) 572–583. [CrossRef] [Google Scholar]
  • B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system. Appl. Math. Comput. 217 (2011) 6159–6167. [Google Scholar]
  • M. Ferney, Modelling and controlling product manufacturing systems using bond-graphs and state equations: continuous systems and discrete systems which can be represented by continuous models. Prod. Plan. Control 11 (2000) 7–19. [CrossRef] [Google Scholar]
  • V.L. Spiegler, M.M. Naim, D.R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems. Eur. J. Oper. Res. 251 (2016) 888–903. [CrossRef] [Google Scholar]
  • J. Wikner, D.R. Towill and M.M. Naim, Smoothing supply chain dynamics. Int. J. Prod. Econ. 22 (1991) 231–248. [CrossRef] [Google Scholar]
  • L. Yan, J. Liu, F. Xu, K.L. Teo and M. Lai, Control and synchronization of hyperchaos in digital manufacturing supply chain. Appl. Math. Comput. 391 (2021) 125646. [Google Scholar]
  • M. Ghane, M. Zarvandi and M.R. Yousefi, Attenuating bullwhip effect using robust-intelligent controller, in 5th IEEE International Conference Intelligent Systems. IEEE (2010) 309–314. [Google Scholar]
  • M. Boccadoro, F. Martinelli and P. Valigi, A multi-agent control scheme for a supply chain model. Asian J. Control 10 (2008) 260–266. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Jeong, Y. Oh and S. Kim, Robust control of multi-echelon production-distribution systems with limited decision policy (II). KSME Int. J. 14 (2000) 380–392. [CrossRef] [Google Scholar]
  • P. Pal, A.K. Bhunia and S.K. Goyal, On optimal partially integrated production and marketing policy with variable demand under flexibility and reliability considerations via genetic algorithm. Appl. Math. Comput. 188 (2007) 525–537. [MathSciNet] [Google Scholar]
  • T.C. Lin and T.Y. Lee, Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19 (2011) 623–635. [CrossRef] [Google Scholar]
  • D. Ivanov, A. Dolgui and B. Sokolov, On applicability of optimal control theory to adaptive supply chain planning and scheduling. IFAC Proc. 44 (2011) 423–434. [Google Scholar]
  • B. Scholz-Reiter, H. Höhns and T. Hamann, Adaptive control of supply chains: building blocks and tools of an agent-based simulation framework. CIRP Ann. 53 (2004) 353–356. [CrossRef] [Google Scholar]
  • Y.B. Shtessel, J.A. Moreno, F. Plestan, L.M. Fridman and A.S. Poznyak, Super-twisting adaptive sliding mode control: a Lyapunov design, in 49th IEEE Conference on Decision and Control (CDC). IEEE (2010) 5109–5113. [Google Scholar]
  • S. Boubzizi, A. Abid and M. Chaabane, Adaptive super-twisting sliding mode control for wind energy conversion system. Int. J. Appl. Eng. Res. 13 (2018) 3524–3532. [Google Scholar]
  • Z. Feng and J. Fei, Design and analysis of adaptive super-twisting sliding mode control for a microgyroscope. PloS One 13 (2018) e0189457. [CrossRef] [PubMed] [Google Scholar]
  • Z. Rabiei, G.R. Bidari and N. Pariz, Synchronization between two different chaotic systems using adaptive sliding mode control. Int. J. Inf. Electron. Eng. 3 (2013) 83–86. [Google Scholar]
  • C.A. Schwartz and I.M.Y. Mareels, Limitations of the use of linearizing control for adaptive control of nonlinear systems. IFAC Proc. 25 (1992) 525–528. [Google Scholar]
  • T. Hsia, On the simplification of linear systems. IEEE Trans. Autom. Control 17 (1972) 372–374. [CrossRef] [Google Scholar]
  • M. Matsubara, On the equivalent dead time. IEEE Trans. Autom. Control 10 (1965) 464–466. [CrossRef] [Google Scholar]
  • E.X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35 (1987) 5288. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • M.S. Tavazoei, Notes on integral performance indices in fractional-order control systems. J. Process Control 20 (2010) 285–291. [CrossRef] [Google Scholar]
  • G. Wang and A. Gunasekaran, Modeling and analysis of sustainable supply chain dynamics. Ann. Oper. Res. 250 (2017) 521–536. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.