Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 989 - 1003
Published online 04 March 2024
  • I.A. Al-Subaihi, Three-Step iterative method for solving nonlinear equations. Univers. J. Math. Appl. 3 (2015) 29–33. [CrossRef] [Google Scholar]
  • N. Andrei, An accelerated gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms 42 (2006) 63–73. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Barzilai and J.M. Borwein, Two point step size gradient method. IMA J. Numer. Anal. 8 (1988) 141–148. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Cauchy, Methodes generales pour la resolution des systemes dequations simultanees. C.R. Acad. Sci. Par. 25 536–538. [Google Scholar]
  • E. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  • A.S. Halilu and M. Waziri, En enhanced matrix-free method via double steplength approach for solving systems of nonlinear equations. Int. J. Appl. math. Res. 6 (2017) 147–156. [CrossRef] [Google Scholar]
  • A.S. Halilu and M. Waziri, An improved derivative-free method via double direction approach for solving systems of nonlinear equations. J. Ramanujan Math. Soc. 33 (2018) 75–89. [MathSciNet] [Google Scholar]
  • A.S. Halilu, M.Y. Waziri, H. Abdullahi and A. Majumder, On the hybridization of the double step length method for solving system of nonlinear equations. Malays. J. Math. Sci. 16 (2022) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ishikawa, Fixed points by a new iteration method. Proc. Am. Math. Soc. 44 (1974) 147–150. [CrossRef] [Google Scholar]
  • W. La Cruz, J.M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75 (2006) 1429–48. [CrossRef] [Google Scholar]
  • D. Li and M. Fukushima, A global and superlinear convergent Gauss-Newton based BFGS method for symmetric nonlinear equation. SIAM J. Numer. Anal. 37 (1999) 152–172. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. Noor and M. Waseem, Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57 (2009) 101–106. [MathSciNet] [Google Scholar]
  • M.J. Petrović, An Accelerated double step size model in unconstrained optimization, Appl. Math. Comput. 250 (2015) 39–319. [Google Scholar]
  • M.J. Petrović and P.S. Stanimirović, Accelerated double direction method for solving unconstrained optimization problems. Math. Probl. Eng. DOI: 10.1155/2014/965104 (2014). [Google Scholar]
  • M.J. Petrović, V. Rakoc̆ević, N. Kontrec, S. Panić and D. Ilić, Hybridization of accelerated gradient descent method. Numer. Algorithms 79 (2018) 769–786. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjugues. Rev. Fr. Inform. Rech. Oper. 16 (1969) 35–43. [Google Scholar]
  • V. Rakoc̀ević and M.J. Petrović, Comparative analysis of accelerated models for solving unconstrained optimization problems with application of Khan’s hybrid rule. Mathematics 10 (2022). [Google Scholar]
  • H.K. Safeer, A Picard-Mann hybrid iterative process, Khan fixed point theory and applications (2013) 69. [Google Scholar]
  • P.S. Stanimirović and M.B. Miladinović, Accelerated gradient descent methods with line search. Numer. Algorithms 54 (2010) 503–520. [CrossRef] [MathSciNet] [Google Scholar]
  • M.Y. Waziri and Z.A. Majid, An enhanced matrix-free secant method via predictor-corrector modified line search strategies for solving systems of nonlinear equations. Int. J. Math. Math. Sci. (2013) 6. [Google Scholar]
  • M.Y. Waziri, W.J. Leong, M.A. Hassan and M. Monsi, Jacobian computation-free Newton method for systems of non-linear equations. J. Numer. Math. Stoch. 2 (2010) 54–63. [MathSciNet] [Google Scholar]
  • M.Y. Waziri, K. Ahmed and J. Sabi’u, A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations. Appl. Math. Comput. 361 (2019) 645–660. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.