Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 19 - 44
DOI https://doi.org/10.1051/ro/2023182
Published online 09 January 2024
  • S.H. Jacobson and J.A. Jokela, Beyond COVID-19 deaths during the COVID-19 pandemic in the United States. Health Care Manage. Sci. 24 (2021) 661–665. [CrossRef] [PubMed] [Google Scholar]
  • A.F. Abdin, Y.P. Fang, A. Caunhye, D. Alem, A. Barros and E. Zio, An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19. Eur. J. Oper. Res. 304 (2021) 308–324. [Google Scholar]
  • S.P. Silal, Operational research: a multidisciplinary approach for the management of infectious disease in a global context. Eur. J. Oper. Res. 291 (2020) 929–934. [Google Scholar]
  • D. Tippong, S. Petrovic and V. Akbari, A review of applications of operational research in healthcare coordination in disaster management. Eur. J. Oper. Res. 301 (2021) 1–17. [Google Scholar]
  • X. Qian, R. Ren, Y. Wang, Y. Guo, J. Fang, Z.D. Wu, P.L. Liu and T.R. Han, Fighting against the common enemy of COVID-19: a practice of building a community with a shared future for mankind. Infectious Dis. Poverty 9 (2020) 34. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Chen, C.S. Pun and H.Y. Wong, Efficient social distancing during the COVID-19 pandemic: integrating economic and public health considerations. Eur. J. Oper. Res. 304 (2021) 84–98. [Google Scholar]
  • C. Ji, D. Jiang and N. Shi, Multigroup SIR epidemic model with stochastic perturbation. Phys. A Stat. Mech. App. 390 (2011) 1747–1762. [CrossRef] [Google Scholar]
  • M. Liu, C. Bai and K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3444–3453. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates. Appl. Math. Comput. 218 (2011) 280–286. [MathSciNet] [Google Scholar]
  • Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. Real World App. 14 (2013) 1434–1456. [CrossRef] [Google Scholar]
  • J. Yu, D. Jiang and N. Shi, Global stability of two-group SIR model with random perturbation. J. Math. Anal. App. 360 (2009) 235–244. [CrossRef] [Google Scholar]
  • C. Yuan, D. Jiang, D. Regan and R. Agarwal, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation. Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 2501–2516. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Anderson and R. May, Infectious Diseases of Humans. Oxford University Press (1991). [CrossRef] [Google Scholar]
  • C. Wang, H. Zhang, Y. Gao and Q. Deng, Comparative study of government response measures and epidemic trends for COVID-19 global pandemic. Risk Anal. 42 (2022) 40–55. [CrossRef] [PubMed] [Google Scholar]
  • A. Qazi, M. Simsekler and B. Gaudenzi, Prioritizing multidimensional interdependent factors influencing COVID-19 risk. Risk Anal. 42 (2022) 143–161. [CrossRef] [PubMed] [Google Scholar]
  • T.M. Chen, J. Rui, Q.P. Wang, Z.Y. Zhao, J.A. Cui and L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Dis. Poverty 9 (2020) 24. [CrossRef] [Google Scholar]
  • A. Chowdhury, K. Kabir and J. Tanimoto, How quarantine and social distancing policy can suppress the outbreak of novel coronavirus in developing or under poverty level countries: a mathematical and statistical analysis. Res. Square (2020). DOI: 10.21203/rs.3.rs-20294/v1. [Google Scholar]
  • K. Thompson, D. Kalkowska and K. Badizadegan, Hypothetical emergence of poliovirus in 2020: part 1. Consequences of policy decisions to respond using nonpharmaceutical interventions. Expert Rev. Vaccines 20 (2021) 465–481. [CrossRef] [PubMed] [Google Scholar]
  • O. Iloanusi and A. Ross, Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19. Chaos Solitons Fractals 152 (2021) 111340. [CrossRef] [PubMed] [Google Scholar]
  • A. Canabarro, E. Teno’rio, R. Martins, L. Martins, S. Brito and R. Chaves, Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies. PLoS One 15 (2020) e0236310. [Google Scholar]
  • O. Otunuga, Estimation of epidemiological parameters for COVID-19 cases using a stochastic SEIRS epidemic model with vital dynamics. Results Phys. 28 (2021) 104664. [CrossRef] [Google Scholar]
  • C.A.H. Buhat, J.C.C. Duero, E.F.O. Felix, J.F. Rabajante and J.B. Mamplata, Optimal allocation of COVID-19 test kits among accredited testing centers in the philippines. J. Healthcare Inf. Res. 5 (2021) 54–69. [CrossRef] [PubMed] [Google Scholar]
  • D. Biswas and L. Alfandari, Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19. Eur. J. Oper. Res. 303 (2022) 1372–1391. [CrossRef] [Google Scholar]
  • L. Thul and W. Powell, Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic. Eur. J. Oper. Res. 304 (2021) 325–338. [Google Scholar]
  • S. Lai, N.W. Ruktanonchai, A. Carioli, C.W. Ruktanonchai, J.R. Floyd, O. Prosper, C. Zhang, X. Du, W. Yang and A.J. Tatem, Assessing the effect of global travel and contact restrictions on mitigating the COVID-19 pandemic. Engineering 7 (2021) 914–923. [CrossRef] [PubMed] [Google Scholar]
  • S. Li, Y. Zhou, T. Kundu and F. Zhang, Impact of entry restriction policies on international air transport connectivity during COVID-19 pandemic. Transp. Res. Part E: Logistics Transp. Rev. 152 (2021) 102411. [CrossRef] [Google Scholar]
  • L. Bou-Karroum, J. Khabsa, M. Jabbour, N. Hilal, Z. Haidar, P. Abi Khalil, R.A. Khalek, J. Assaf, G. Honein-AbouHaidar, C.A. Samra, L. Hneiny, S. Al-Awlaqi, J. Hanefeld, F. El-Jardali, E.A. Akl and C. El Bcheraoui, Public health effects of travel-related policies on the COVID-19 pandemic: a mixed-methods systematic review. J. Infection 83 (2021) 413–423. [CrossRef] [Google Scholar]
  • K. Kabir, S. Chowdhury and T. Jun, An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: export-importation epidemic dynamics. Chaos Solitons Fractals 146 (2021) 110918. [CrossRef] [PubMed] [Google Scholar]
  • R. Pindyck and J. Rotemberg, Dynamic factor demands and the effects of energy price shocks. Am. Econ. Rev. Am. Econ. Assoc. 73 (1983) 1066–1079. [Google Scholar]
  • D. Meng and Y. Lu, Strength and direction of regional economic linkage in Jiangsu province based on gravity model. Prog. Geogr. 28 (2009) 697–704. [Google Scholar]
  • E. Elattar, A hybrid genetic algorithm and bacterial foraging approach for dynamic economic dispatch problem. Int. J. Electr. Power Energy Syst. 69 (2015) 18–26. [CrossRef] [Google Scholar]
  • T. Jayabarathi, K. Jayaprakash, D. Jeyakumar and T. Raghunathan, Evolutionary programming techniques for different kinds of economic dispatch problems. Electr. Power Syst. Res. 73 (2005) 169–176. [CrossRef] [Google Scholar]
  • X. Lu, K. Zhou and S. Yang, Multi-objective optimal dispatch of microgrid containing electric vehicles. J. Cleaner Prod. 165 (2017) 1572–1581. [CrossRef] [Google Scholar]
  • W.J. Guan, Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J.X. He, L. Liu, H. Shan, C.L. Lei, D.S. Hui and B. Du, China medical treatment expert group for COVID-19. Clin. Charact. Coronavirus Dis. 382 (2019) 1708–1720. [Google Scholar]
  • G. Li, S. Shivam, M.E. Hochberg, Y. Wardi and J.S. Weitz, Disease-dependent interaction policies to support health and economic outcomes during the COVID-19 epidemic. IScience 24 (2021) 102710. [CrossRef] [PubMed] [Google Scholar]
  • P. Johansson, Is there a meaningful definition of the value of a statistical life? J. Health Econ. 20 (2001) 131–139. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.