Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Graphs, Combinatorics, Algorithms and Optimization
Page(s) 535 - 555
DOI https://doi.org/10.1051/ro/2023156
Published online 19 February 2024
  • A.R. Ahmadi Keshavarz, D. Jaafari, M. Khalaj and P. Dokouhaki, A survey of the literature on order-picking systems by combining planning problems. Appl. Sci. 11 (2021) 10641. [CrossRef] [Google Scholar]
  • A. Amirteimoori, I. Mahdavi, M. Solimanpur, S.S. Ali and E.B. Tirkolaee, A parallel hybrid pso-ga algorithm for the flexible flow-shop scheduling with transportation. Comput. Ind. Eng. 173 (2022) 108672. [CrossRef] [Google Scholar]
  • D. Anghinolfi and M. Paolucci, A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times. Eur. J. Oper. Res. 193 (2009) 73–85. [CrossRef] [Google Scholar]
  • K. Azadeh, R. De Koster and D. Roy, Robotized and automated warehouse systems: review and recent developments. Transp. Sci. 53 (2019) 917–945. [CrossRef] [Google Scholar]
  • F. Baki and R. Vickson, One-operator, two-machine open shop and flow shop scheduling with setup times for machines and maximum lateness objective. INFOR: Inf. Syst. Oper. Res. 41 301–319. [Google Scholar]
  • M.F. Baki and R.G. Vickson, One-operator, two-machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective. Optim. Methods Softw. 19 (2004) 165–178. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Biskup, Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115 (1999) 173–178. [Google Scholar]
  • D. Biskup, A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 188 (2008) 315–329. [Google Scholar]
  • C. Blum and A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35 (2003) 268–308. [CrossRef] [Google Scholar]
  • N. Boysen, R. De Koster and F. Weidinger, Warehousing in the e-commerce era: a survey. Eur. J. Oper. Res. 277 (2019) 396–411. [CrossRef] [Google Scholar]
  • A. Branda, D. Castellano, G. Guizzi and V. Popolo, Metaheuristics for the flow shop scheduling problem with maintenance activities integrated. Comput. Ind. Eng. 151 (2021) 106989. [CrossRef] [Google Scholar]
  • Ç. Cergibozan and A.S. Tasan, Order batching operations: an overview of classification, solution techniques, and future research. J. Intell. Manuf. 30 (2019) 335–349. [CrossRef] [Google Scholar]
  • T.E. Cheng, G. Wang and C. Sriskandarajah, One-operator–two-machine flowshop scheduling with setup and dismounting times. Comput. Oper. Res. 26 (1999) 715–730. [CrossRef] [Google Scholar]
  • X. Dong, H. Huang and P. Chen, An improved neh-based heuristic for the permutation flowshop problem. Comput. Oper. Res. 35 (2008) 3962–3968. [CrossRef] [Google Scholar]
  • V. Fernandez-Viagas, R. Ruiz and J.M. Framinan, A new vision of approximate methods for the permutation flowshop to minimise makespan: state-of-the-art and computational evaluation. Eur. J. Oper. Res. 257 (2017) 707–721. [CrossRef] [Google Scholar]
  • T. Franzke, E.H. Grosse, C.H. Glock and R. Elbert, An investigation of the effects of storage assignment and picker routing on the occurrence of picker blocking in manual picker-to-parts warehouses. Int. J. Logistics Manage. 28 (2017) 841–863. [CrossRef] [Google Scholar]
  • Y. Jaghbeer, R. Hanson and M.I. Johansson, Automated order picking systems and the links between design and performance: a systematic literature review. Int. J. Prod. Res. 58 (2020) 4489–4505. [CrossRef] [Google Scholar]
  • M. Ji, D. Yao, Q. Yang and T. Cheng, Machine scheduling with DeJong’s learning effect. Comput. Ind. Eng. 80 (2015) 195–200. [Google Scholar]
  • M. Ji, X. Tang, X. Zhang and T.E. Cheng, Machine scheduling with deteriorating jobs and DeJong’s learning effect. Comput. Ind. Eng. 91 (2016) 42–47. [Google Scholar]
  • P.J. Kalczynski and J. Kamburowski, On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega 35 (2007) 53–60. [CrossRef] [Google Scholar]
  • C. Koulamas and G.J. Kyparisis, Single-machine scheduling problems with past-sequence-dependent setup times. Eur. J. Oper. Res. 187 (2008) 1045–1049. [CrossRef] [Google Scholar]
  • W.-Y. Ku and J.C. Beck, Mixed integer programming models for job shop scheduling: a computational analysis. Comput. Oper. Res. 73 (2016) 165–173. [CrossRef] [MathSciNet] [Google Scholar]
  • W.-H. Kuo, Single-machine group scheduling with time-dependent learning effect and position-based setup time learning effect. Ann. Oper. Res. 196 (2012) 349–359. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects. Inf. Sci. 453 (2018) 408–425. [Google Scholar]
  • C.-J. Liao, C.-T. Tseng and P. Luarn, A discrete version of particle swarm optimization for flowshop scheduling problems. Comput. Oper. Res. 34 (2007) 3099–3111. [CrossRef] [Google Scholar]
  • S.-W. Lin, C.-Y. Cheng, P. Pourhejazy and K.-C. Ying, Multi-temperature simulated annealing for optimizing mixed-blocking permutation flowshop scheduling problems. Expert Syst. App. 165 (2021) 113837. [CrossRef] [Google Scholar]
  • C. Low, Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Comput. Oper. Res. 32 (2005) 2013–2025. [CrossRef] [Google Scholar]
  • A.S. Manne, On the job-shop scheduling problem. Oper. Res. 8 (1960) 219–223. [CrossRef] [Google Scholar]
  • M. Masae, C.H. Glock and E.H. Grosse, Order picker routing in warehouses: a systematic literature review. Int. J. Prod. Econ. 224 (2020) 107564. [CrossRef] [Google Scholar]
  • G. Mosheiov and J.B. Sidney, Scheduling with general job-dependent learning curves. Eur. J. Oper. Res. 147 (2003) 665–670. [Google Scholar]
  • M. Nawaz, E.E. Enscore Jr. and I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11 (1983) 91–95. [CrossRef] [Google Scholar]
  • D. Oko lowski and S. Gawiejnowicz, Exact and heuristic algorithms for parallel-machine scheduling with DeJong’s learning effect. Comput. Ind. Eng. 59 (2010) 272–279. [CrossRef] [Google Scholar]
  • Q.-K. Pan and R. Ruiz, A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput. Oper. Res. 40 (2013) 117–128. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Pei, X. Liu, P.M. Pardalos, K. Li, W. Fan and A. Migdalas, Single-machine serial-batching scheduling with a machine availability constraint, position-dependent processing time, and time-dependent set-up time. Optim. Lett. 11 (2017) 1257–1271. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Pei, X. Liu, P.M. Pardalos, A. Migdalas and S. Yang, Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Global Optim. 67 (2017) 251–262. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Pei, B. Cheng, X. Liu, P.M. Pardalos and M. Kong, Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time. Ann. Oper. Res. 272 (2019) 217–241. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ribas, R. Companys and X. Tort-Martorell, Comparing three-step heuristics for the permutation flow shop problem. Comput. Oper. Res. 37 (2010) 2062–2070. [CrossRef] [Google Scholar]
  • R. Ruiz and T. Stützle, A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177 (2007) 2033–2049. [CrossRef] [Google Scholar]
  • R. Ruiz, C. Maroto and J. Alcaraz, Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34 (2006) 461–476. [CrossRef] [Google Scholar]
  • E. Vallada and R. Ruiz, A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 211 (2011) 612–622. [CrossRef] [Google Scholar]
  • T. Van Gils, K. Ramaekers, A. Caris and R.B. de Koster, Designing efficient order picking systems by combining planning problems: state-of-the-art classification and review. Eur. J. Oper. Res. 267 (2018) 1–15. [CrossRef] [Google Scholar]
  • H.M. Wagner, An integer linear-programming model for machine scheduling. Naval Res. Logistics Q. 6 (1959) 131–140. [CrossRef] [Google Scholar]
  • J.-B. Wang, Single-machine scheduling with past-sequence-dependent setup times and time-dependent learning effect. Comput. Ind. Eng. 55 (2008) 584–591. [CrossRef] [Google Scholar]
  • T.P. Wright, Factors affecting the cost of airplanes. J. Aeronautical Sci. 3 (1936) 122–128. [CrossRef] [Google Scholar]
  • C.-C. Wu, Y. Yin, W.-H. Wu, H.-M. Chen and S.-R. Cheng, Using a branch-and-bound and a genetic algorithm for a single-machine total late work scheduling problem. Soft Comput. 20 (2016) 1329–1339. [Google Scholar]
  • D. Yang, Research on Intelligent Logistics Warehousing System Design and Operation Strategy Optimizaion. Economy & Management Publishing House (2023). [Google Scholar]
  • Y. Yin, C.-C. Wu, W.-H. Wu and S.-R. Cheng, The single-machine total weighted tardiness scheduling problem with position-based learning effects. Comput. Oper. Res. 39 (2012) 1109–1116. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Yin, W.-H. Wu, W.-H. Wu and C.-C. Wu, A branch-and-bound algorithm for a single machine sequencing to minimize the total tardiness with arbitrary release dates and position-dependent learning effects. Inf. Sci. 256 (2014) 91–108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.