Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 185 - 205
Published online 26 January 2024
  • K. Akkaya and M. Younis, A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 3 (2005) 325–349. [CrossRef] [Google Scholar]
  • I.F. Akyildiz, A. Kak and S. Nie, 6G and beyond: The future of wireless communications systems. IEEE Access 8 (2020) 133995–134030. [CrossRef] [Google Scholar]
  • A. Al-Hourani, S. Kandeepan and A. Jamalipour, Modeling air-to-ground path loss for low altitude platforms in urban environments. In 2014 IEEE Global Communications Conference (2014) 2898–2904. [Google Scholar]
  • A. Al-Hourani, S. Kandeepan and S. Lardner, Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 3 (2014) 569–572. [CrossRef] [Google Scholar]
  • A. Almohamad, M.O. Hasna, T. Khattab and M. Haouari, Maximizing dense network flow through wireless multihop backhauling using UAVs. In 2018 International Conference on Information and Communication Technology Convergence (ICTC) (2018) 526–531. [Google Scholar]
  • A. Almohamad, M.O. Hasna, T. Khattab and M. Haouari, An efficient algorithm for dense network flow maximization with multihop backhauling and NFPs. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (2019) 1–5. [Google Scholar]
  • A. Almohamad, M.O. Hasna, T. Khattab and M. Haouari, On network flow maximization via multihop backhauling and UAVs: An integer programming approach. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring) (2019) 1–6. [Google Scholar]
  • M. Alzenad, M.Z. Shakir, H. Yanikomeroglu and M.-S. Alouini, FSO-based vertical Backhaul/Fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 56 (2018) 218–224. [CrossRef] [Google Scholar]
  • G. Amponis, T. Lagkas, M. Zevgara, G. Katsikas, T. Xirofotos, I. Moscholios and P. Sarigiannidis, Drones in B5G/6G networks as flying base stations. Drones 6 (2022). [Google Scholar]
  • Y. Dai, Y. Guo and J. Hao, UAV placement and resource allocation for multi-hop UAV assisted Backhaul system. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2021) 1–6. [Google Scholar]
  • L. Flores-Luyo, A. Agra, R. Figueiredo and E. Ocaña, Mixed-integer formulations for a routing problem with information collection in wireless networks. Eur. J. Oper. Res. 280 (2020) 621–638. [CrossRef] [Google Scholar]
  • M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge University Press (2012). [CrossRef] [Google Scholar]
  • S. Hanna, E. Krijestorac and D. Cabric, UAV swarm position optimization for high capacity MIMO Backhaul. IEEE J. Sel. Areas Commun. 39 (2021) 3006–3021. [CrossRef] [Google Scholar]
  • S. Irnich and G. Desaulniers, Shortest path problems with resource constraints. Column Generation, Springer, 2005, pp. 33–65. [CrossRef] [Google Scholar]
  • X. Jiang, M. Sheng, N. Zhao, C. Xing, W. Lu and X. Wang, Green UAV communications for 6G: A survey. Chinese J. Aeronaut. 35 (2022) 19–34. [CrossRef] [Google Scholar]
  • E.L.M. Júnior, V.N. Coelho, I.M. Coelho, Y.A. de M. Frota, R.H. Koochaksaraei, L.S. Ochi and B.N. Coelho, UAVs routes optimization on smart cities and regions. RAIRO:RO 56 (2022) 853–869. [CrossRef] [EDP Sciences] [Google Scholar]
  • H.P. Keeler, Simulating a Matérn Cluster Point Process (2018). [Google Scholar]
  • M.E. Keskin, A column generation heuristic for optimal wireless sensor network design with mobile sinks. Eur. J. Oper. Res. 260 (2017) 291–304. [CrossRef] [Google Scholar]
  • E.-S. Kim and C.A. Glass, Perfect periodic scheduling for binary tree routing in wireless networks. Eur. J. Oper. Res. 247 (2015) 389–400. [CrossRef] [Google Scholar]
  • H. Koumaras, G. Makropoulos, M. Batistatos, S. Kolometsos, A. Gogos, G. Xilouris, A. Sarlas and M.-A. Kourtis, 5G-enabled UAVs with command and control software component at the edge for supporting energy efficient opportunistic networks. Energies 14 (2021) 1480. [CrossRef] [Google Scholar]
  • S. Kurt and B. Tavli, Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations. IEEE Antennas Propag. Mag. 59 (2017) 18–37. [CrossRef] [Google Scholar]
  • B. Li, Z. Fei and Y. Zhang, UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 6 (2019) 2241–2263. [CrossRef] [Google Scholar]
  • Y. Lu, C. Yang and J. Yang, A multi-objective humanitarian pickup and delivery vehicle routing problem with drones. Ann. Oper. Res. 319 (2022) 291–353. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Masaracchia, Y. Li, K.K. Nguyen, C. Yin, S.R. Khosravirad, D.B.D. Costa and T.Q. Duong, UAV-enabled ultra-reliable low-latency communications for 6G: A comprehensive survey. IEEE Access 9 (2021) 137338–137352. [CrossRef] [Google Scholar]
  • M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam and M. Debbah, A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21 (2019) 2334–2360. [CrossRef] [Google Scholar]
  • O. Ozkan and S. Kilic, UAV routing by simulation-based optimization approaches for forest fire risk mitigation. Ann. Oper. Res. 320 (2023) 937–973. [CrossRef] [Google Scholar]
  • L.L. Pinto, K.C.C. Fernandes and K.V. Cardoso, Flow routing aiming load balancing and path length in multi-hop networks with different link qualities. RAIRO:RO 55 (2021) 2631–2637. [CrossRef] [EDP Sciences] [Google Scholar]
  • T.S. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall PTR, New Jersey (1996). [Google Scholar]
  • S.A.W. Shah, T. Khattab, M.Z. Shakir and M.O. Hasna, A distributed approach for networked flying platform association with small cells in 5G+ networks. In GLOBECOM 2017–2017 IEEE Global Communications Conference (2017) 1–7. [Google Scholar]
  • S.A.W. Shah, T. Khattab, M.Z. Shakir and M.O. Hasna, Association of networked flying platforms with small cells for network centric 5G+ C-RAN. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2017) 1–7. [Google Scholar]
  • M.K. Shehzad, A. Ahmad, S.A. Hassan and H. Jung, Backhaul-aware intelligent positioning of UAVs and association of terrestrial base stations for fronthaul connectivity. IEEE Trans. Netw. Sci. Eng. 8 (2021) 2742–2755. [CrossRef] [Google Scholar]
  • N. Tafintsev, D. Moltchanov, M. Gerasimenko, M. Gapeyenko, J. Zhu, S.-P. Yeh, N. Himayat, S. Andreev, Y. Koucheryavy and M. Valkama, Aerial access and backhaul in mmWave B5G systems: Performance dynamics and optimization. IEEE Commun. Mag. 58 (2020) 93–99. [CrossRef] [Google Scholar]
  • Y.B. Türkoğulları, N. Aras, I.K. Altınel and C. Ersoy, A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks. Eur. J. Oper. Res. 207 (2010) 1014–1026. [CrossRef] [Google Scholar]
  • Y. Xue, B. Xu, W. Xia, J. Zhang and H. Zhu, Backhaul-aware resource allocation and optimum placement for UAV-assisted wireless communication network. Electronics 9 (2020). [PubMed] [Google Scholar]
  • Y. Zeng, R. Zhang and T.J. Lim, Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54 (2016) 36–42. [CrossRef] [Google Scholar]
  • T. Zhang, Y. Wang, Y. Liu, W. Xu and A. Nallanathan, Cache-enabling UAV communications: Network deployment and resource allocation. IEEE Trans. Wirel. Commun. 19 (2020) 7470–7483. [CrossRef] [Google Scholar]
  • G. Zhang, N. Jia, N. Zhu, Y. Adulyasak and S. Ma, Robust drone selective routing in humanitarian transportation network assessment. Eur. J. Oper. Res. 305 (2023) 400–428. [CrossRef] [Google Scholar]
  • Y. Zhao, W. Zhai, J. Zhao, T. Zhang, S. Sun, D. Niyato and K.-Y. Lam, A Comprehensive Survey of 6G. Wireless Communications (2021) 1–34 Preprint arXiv:2101.03889v2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.