Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 79 - 102
Published online 09 January 2024
  • S. Asian, J. Wang and G. Dickson, Trade disruptions, behavioral biases, and social influences: can luxury sporting goods supply chains be immunized? Transp. Res. Part E Logist. Transp. Rev. 143 (2020) 102064. [CrossRef] [Google Scholar]
  • N. Bakshi and P. Kleindorfer, Coopetition and investment for supply-chain resilience. Prod. Oper. Manage. 18 (2009) 583–603. [CrossRef] [Google Scholar]
  • G. Behzadi, M. O’Sullivan and T.L. Olsen, On metrics for supply chain resilience. Eur. J. Oper. Res. 287 (2020) 145–158. [CrossRef] [Google Scholar]
  • E. Cao, X. Zhou and K. Lv, Coordinating a supply chain under demand and cost disruptions. Int. J. Prod. Res. 53 (2015) 3735–3752. [CrossRef] [Google Scholar]
  • S.R. Cardoso, A.P. Barbosa-Póvoa, S. Relvas and A.Q. Novais, Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega (UK) 56 (2015) 53–73. [CrossRef] [Google Scholar]
  • T.M. Choi and X. Shi, Reducing supply risks by supply guarantee deposit payments in the fashion industry in the “New Normal after COVID-19”. Omega 109 (2022) 102605. [CrossRef] [Google Scholar]
  • B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization. Ann. Oper. Res. 153 (2007) 235–256. [CrossRef] [MathSciNet] [Google Scholar]
  • A.M. Davis and S. Leider, Contracts and capacity investment in supply chains. Manuf. Serv. Oper. Manage. 20 (2018) 403–421. [CrossRef] [Google Scholar]
  • M. de Arquer, B. Ponte and R. Pino, Examining the balance between efficiency and resilience in closed-loop supply chains. Cent. Eur. J. Oper. Res. 30 (2022) 1307–1336. [CrossRef] [PubMed] [Google Scholar]
  • L.N.K. Duong and J. Chong, Supply chain collaboration in the presence of disruptions: a literature review. Int. J. Prod. Res. 58 (2020) 3488–3507. [CrossRef] [Google Scholar]
  • M.H. Farahani, M. Dawande, H.B. Gurnani and G. Janakiraman, Better to bend than to break: sharing supply risk using the supply-flexibility contract. Manuf. Serv. Oper. Manage. 23 (2021) 1257–1274. [CrossRef] [Google Scholar]
  • E. Gagnon and D. López-Salido, Small price responses to large demand shocks. J. Eur. Econ. Assoc. 18 (2020) 792–828. [CrossRef] [Google Scholar]
  • H. Hashemi Doulabi and S. Khalilpourazari, Stochastic weekly operating room planning with an exponential number of scenarios. Ann. Oper. Res. 328 (2023) 643–664. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Hosseini, D. Ivanov and J. Blackhurst, Conceptualization and measurement of supply chain resilience in an open-system context. IEEE Trans. Eng. Manage. 69 (2020) 3111–3126. [Google Scholar]
  • D. Ivanov, Viable supply chain model: integrating agility, resilience and sustainability perspectives – lessons from and thinking beyond the COVID-19 pandemic. Ann. Oper. Res. 319 (2022) 1411–1431. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • N. Jain, K. Girotra and S. Netessine, Recovering global supply chains from sourcing interruptions: the role of sourcing strategy. Manuf. Serv. Oper. Manage. 4614 (2021) 1–18. [Google Scholar]
  • S.H. Jung, Offshore versus onshore sourcing: quick response, random yield, and competition. Prod. Oper. Manage. 29 (2020) 750–766. [CrossRef] [Google Scholar]
  • G. Kara, A. Özmen and G.W. Weber, Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent. Eur. J. Oper. Res. 27 (2019) 241–261. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Kropat, A. Ozmen, G.W. Weber, S. Meyer-Nieberg and O. Defterli, Fuzzy prediction strategies for gene-environment networks-fuzzy regression analysis for two-modal regulatory systems. RAIRO: Oper. Res. 50 (2015) 413–435. [Google Scholar]
  • P. Kumar, R. Baraiya, D. Das, S.K. Jakhar, L. Xu and S.K. Mangla, Social responsibility and cost-learning in dyadic supply chain coordination. Transp. Res. Part E Logist. Transp. Rev. 156 (2021) 102549. [CrossRef] [Google Scholar]
  • D. Lei, J. Li and Z. Liu, Supply chain contracts under demand and cost disruptions with asymmetric information. Int. J. Prod. Econ. 139 (2012) 116–126. [Google Scholar]
  • G. Li, M. Liu, Y. Bian and S.P. Sethi, Guarding against disruption risk by contracting under information asymmetry. Decis. Sci. 51 (2020) 1521–1559. [CrossRef] [Google Scholar]
  • G. Li, X. Li and M. Liu, Inducing supplier backup via manufacturer information sharing under supply disruption risk. Comput. Ind. Eng. 176 (2023) 108914. [CrossRef] [Google Scholar]
  • Z. Liu, M. Li and X. Zhai, Managing supply chain disruption threat via a strategy combining pricing and self-protection. Int. J. Prod. Econ. 247 (2022) 108452. [CrossRef] [Google Scholar]
  • G. Liu, H. Wang and X. Shao, Technology investments into a supplier with upstream entry. Eur. J. Oper. Res. 305 (2023) 240–259. [CrossRef] [Google Scholar]
  • G. Lorenzoni, A theory of demand shocks. Am. Econ. Rev. 99 (2009) 2050–2084. [CrossRef] [Google Scholar]
  • D. Loske, The impact of COVID-19 on transport volume and freight capacity dynamics: an empirical analysis in German food retail logistics. Transp. Res. Interdiscip. Perspect. 6 (2020) 100165. [Google Scholar]
  • R. Lotfi, B. Kargar, M. Rajabzadeh, F. Hesabi and E. Özceylan, Hybrid fuzzy and data-driven robust optimization for resilience and sustainable health care supply chain with vendor-managed inventory approach. Int. J. Fuzzy Syst. 24 (2022) 1216–1231. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Lu, R. Nguyen, M. Rahman and J. Winfree, Demand shocks and supply chain resilience: an agent based modelling approach and application to the potato supply chain, in Risks in Agricultural Supply Chains, edited by L. Lu, R. Nguyen, M. Rahman and J. Winfree. Antràs and Zilberman (2023). [Google Scholar]
  • S.K. Maiti and S.K. Roy, Bi-level programming for stackelberg game with intuitionistic fuzzy number: a ranking approach. J. Oper. Res. Soc. China 9 (2021) 131–149. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Mardanya and S.K. Roy, New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO: Oper. Res. 57 (2023) 99–120. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G.F. Massari and I. Giannoccaro, Investigating the effect of horizontal coopetition on supply chain resilience in complex and turbulent environments. Int. J. Prod. Econ. 237 (2021) 108150. [CrossRef] [Google Scholar]
  • S. Meyer-Nieberg, E. Kropat and P.D. Weber, Dynamical supply networks for crisis and disaster relief: networks resilience and decision support in uncertain environments, in Operations Research Proceedings 2013. Springer International Publishing (2014) 309–315. [CrossRef] [Google Scholar]
  • J. Moosavi and S. Hosseini, Simulation-based assessment of supply chain resilience with consideration of recovery strategies in the COVID-19 pandemic context. Comput. Ind. Eng. 160 (2021) 107593. [CrossRef] [Google Scholar]
  • J. Namdar, X. Li, R. Sawhney and N. Pradhan, Supply chain resilience for single and multiple sourcing in the presence of disruption risks. Int. J. Prod. Res. 56 (2018) 2339–2360. [CrossRef] [Google Scholar]
  • K. Nilakantan, Supply chains subject to demand shocks. Int. J. Logist. Syst. Manage. 21 (2015) 133–159. [Google Scholar]
  • M. Noordhoek, W. Dullaert, D.S.W. Lai and S. Leeuw, A simulation – optimization approach for a service-constrained multi-echelon distribution network. Transp. Res. Part E 114 (2018) 292–311. [CrossRef] [Google Scholar]
  • A. Özmen, Y. Zinchenko and G.W. Weber, Robust multivariate adaptive regression splines under cross-polytope uncertainty: an application in a natural gas market. Ann. Oper. Res. 324 (2023) 1337–1367. [CrossRef] [MathSciNet] [Google Scholar]
  • M.M. Parast, The impact of R&D investment on mitigating supply chain disruptions: empirical evidence from U.S. firms. Int. J. Prod. Econ. 227 (2020) 107671. [CrossRef] [Google Scholar]
  • P. Qiang and A. Nagurney, A bi-criteria indicator to assess supply chain network performance for critical needs under capacity and demand disruptions. Transp. Res. Part A Policy Pract. 46 (2012) 801–812. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Rahman, F. Taghikhah, S.K. Paul, N. Shukla and R. Agarwal, An agent-based model for supply chain recovery in the wake of the COVID-19 pandemic. Comput. Ind. Eng. 158 (2021) 107401. [CrossRef] [Google Scholar]
  • G. Raz, C.T. Druehl and V. Blass, Design for the environment: life-cycle approach using a newsvendor model. Prod. Oper. Manage. 22 (2013) 940–957. [CrossRef] [Google Scholar]
  • J.P. Ribeiro and A.P.F.D. Barbosa-Póvoa, A responsiveness metric for the design and planning of resilient supply chains. Ann. Oper. Res. 324 (2023) 1129–1181. [CrossRef] [PubMed] [Google Scholar]
  • C. Roberta Pereira, M. Christopher and A. Lago Da Silva, Achieving supply chain resilience: the role of procurement. Supply Chain Manage. 19 (2014) 626–642. [CrossRef] [Google Scholar]
  • S. Sani, D. Schaefer and J. Milisavljevic-Syed, Strategies for achieving pre-emptive resilience in military supply chains. Proc. CIRP 107 (2022) 1526–1532. [CrossRef] [Google Scholar]
  • E. Savku and G.W. Weber, A stochastic maximum principle for a markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179 (2018) 696–721. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Savku and G.W. Weber, Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market. Ann. Oper. Res. 312 (2022) 1171–1196. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Savov, Apple Faces Deficit of 6 Million IPhone Pros on China Tumult. Bloomberg (2022). Retrieved from [Google Scholar]
  • J.C. Serpa and H. Krishnan, The strategic role of business insurance. Manage. Sci. 63 (2017) 384–404. [CrossRef] [Google Scholar]
  • L. Shaw, S.K. Das and S.K. Roy, Location–allocation problem for resource distribution under uncertainty in disaster relief operations. Socioecon. Plann. Sci. 82 (2022) 101232. [CrossRef] [Google Scholar]
  • M. Shokouhifar and A. Goli, Designing a resilient–sustainable supply chain network of age-differentiated blood platelets using vertical–horizontal transshipment and grey wolf optimizer. Int. J. Environ. Res. Publ. Health 20 (2023) 4078. [CrossRef] [Google Scholar]
  • L. Silbermayr and S. Minner, Dual sourcing under disruption risk and cost improvement through learning. Eur. J. Oper. Res. 250 (2016) 226–238. [Google Scholar]
  • D. Simchi-Levi, Three scenarios to guide your global supply chain recovery. MIT Sloan Manage, Rev, 2020. [Google Scholar]
  • O. Solgi, J. Gheidar-kheljani, E. Dehghani and A. Taromi, Resilient supplier selection in complex products and their subsystem supply chains under uncertainty and risk disruption: a case study for satellite components. Sci. Iran. 28 (2021) 1802–1816. [Google Scholar]
  • O. Solgi, A. Taromi, J. Gheidar-kheljani and E. Dehghani, Economic pricing of complex products in a competitive closed-loop supply chain network under uncertainty: a case study of cops industry. RAIRO: Oper. Res. 55 (2021) 921–945. [CrossRef] [EDP Sciences] [Google Scholar]
  • F.J. Sting and A. Huchzermeier, Ensuring responsive capacity: how to contract with backup suppliers. Eur. J. Oper. Res. 207 (2010) 725–735. [CrossRef] [Google Scholar]
  • E. Talbi, A taxonomy of metaheuristics for bi-level, in Metaheuristics for Bi-level Optimization. Springer, Berlin, Heidelberg (2013) 1–39. [Google Scholar]
  • E. Tekin and I. Sabuncuoglu, Simulation optimization: a comprehensive review on theory and applications. IIE Trans. (Institute Ind. Eng. 36 (2004) 1067–1081. [Google Scholar]
  • E.B. Tirkolaee, N.S. Aydin and I. Mahdavi, A bi-level decision-making system to optimize a robust-resilient-sustainable aggregate production planning problem. Expert Syst. Appl. 228 (2023) 120476. [CrossRef] [Google Scholar]
  • B. Tomlin and Y. Wang, Operational strategies for managing supply chain disruption risk, in The Handbook of Integrated Risk Management in Global Supply Chains, edited by P. Kouvelis, L. Dong, O. Boyabatli and R. Li. John Wiley & Sons (2011) 79–101. [CrossRef] [Google Scholar]
  • Y.C. Tsao, P.V.R.P. Raj and V. Yu, Product substitution in different weights and brands considering customer segmentation and panic buying behavior. Ind. Mark. Manag. 77 (2019) 209–220. [CrossRef] [Google Scholar]
  • O. Tuncel, S. Hasija and N. Taneri, Why are minimum order quantity contracts popular in practice? A behavioral investigation. Manuf. Serv. Oper. Manage. 24 (2022) 2166–2182. [CrossRef] [Google Scholar]
  • L. Xie, P. Hou and H. Han, Implications of government subsidy on the vaccine product R&D when the buyer is risk averse. Transp. Res. Part E Logist. Transp. Rev. 146 (2021) 102220. [CrossRef] [Google Scholar]
  • D.Q. Yao, X. Yue and J. Liu, Vertical cost information sharing in a supply chain with value-adding retailers. Omega 36 (2008) 838–851. [Google Scholar]
  • A. Yenipazarli, Managing new and remanufactured products to mitigate environmental damage under emissions regulation. Eur. J. Oper. Res. 249 (2016) 117–130. [CrossRef] [Google Scholar]
  • Z. Yin and C. Wang, Strategic cooperation with a backup supplier for the mitigation of supply disruptions. Int. J. Prod. Res. 56 (2018) 4300–4312. [CrossRef] [Google Scholar]
  • X. Yu, Y. Lan and R. Zhao, Strategic green technology innovation in a two-stage alliance: vertical collaboration or co-development? Omega (UK) 98 (2021) 102116. [CrossRef] [Google Scholar]
  • A. Zavala, D. Nowicki and J.E. Ramirez-Marquez, Quantitative metrics to analyze supply chain resilience and associated costs. Proc. Inst. Mech. Eng. Part J. Risk Reliab. 233 (2019) 186–199. [CrossRef] [Google Scholar]
  • M. Zhao and N.K. Freeman, Robust sourcing from suppliers under ambiguously correlated major disruption risks. Prod. Oper. Manag. 28 (2019) 441–456. [CrossRef] [Google Scholar]
  • T. Zhao, X. Xu, Y. Chen, L. Liang, Y. Yu and K. Wang, Coordination of a fashion supply chain with demand disruptions. Transp. Res. Part E Logist. Transp. Rev. 134 (2020) 101838. [CrossRef] [Google Scholar]
  • N. Zhao, X. Liu, Q. Wang and Z. Zhou, Information technology-driven operational decisions in a supply chain with random demand disruption and reference effect. Comput. Ind. Eng. 171 (2022) 108377. [CrossRef] [Google Scholar]
  • R. Zheng, B. Shou and J. Yang, Supply disruption management under consumer panic buying and social learning effects. Omega (UK) 101 (2021) 102238. [CrossRef] [Google Scholar]
  • J. Zhou, J. Zhu and H. Wang, Dual-sourcing and technology cooperation strategies for developing competitive supplier in complex product systems. Comput. Ind. Eng. 159 (2021) 107482. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.