Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 129 - 149
Published online 26 January 2024
  • 5G Americas, Cellular V2X Communications Towards 5G (March 2018). [Google Scholar]
  • M. Ahmed, S. Raza, M.A. Mirza, A. Aziz, M.A. Khan, W.U. Khan, J. Li and Z. Han, A survey on vehicular task offloading: Classification, issues, and challenges. J. King Saud Univ. – Comput. Inf. Sci. 34 (2022) 4135–4162. [Google Scholar]
  • J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong and J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32 (2014) 1065–1082. [CrossRef] [Google Scholar]
  • G. Araniti, C. Campolo, M. Condoluci, A. Iera and A. Molinaro, LTE for vehicular networking: a survey. IEEE Commun. Mag. 51 (2013) 148–157. [CrossRef] [Google Scholar]
  • E. Badidi, Z. Mahrez and E. Sabir, Fog computing for smart cities’ big data management and analytics: a review. Future Internet 12 (2020) 190. [CrossRef] [Google Scholar]
  • M.O. Ball, C.J. Colbourn and J.S. Provan, Network reliability. Handb. Oper. Res. Manage. Sci. 7 (1995) 673–762. [Google Scholar]
  • S. Bitam, A. Mellouk and S. Zeadally, VANET-cloud: cloud computing for vehicular ad-hoc networks. IEEE Wireless Commun. 22 (2015) 96–102. [CrossRef] [Google Scholar]
  • F. Bonomi, R. Milito, P. Natarajan and J. Zhu, Fog computing: a platform for internet of things and analytics, in Big Data and Internet of Things: A Roadmap for Smart Environments, edited by N. Bessis and C. Dobre. Springer International Publishing, Cham (2014) 169–186. [CrossRef] [Google Scholar]
  • Cisco White Paper, Visual networking index: forecast and trends, 2017–2022 (February 2019). [Google Scholar]
  • C. Cox, Architecture of the core network, Chapter 2, in An Introduction to 5G. John Wiley & Sons, Ltd. (2021) 29–53. [CrossRef] [Google Scholar]
  • S. Dharmaraja, V. Jindal and U. Varshney, Reliability and survivability analysis for umts networks: an analytical approach. IEEE Trans. Network Serv. Manage. 5 (2008) 132–142. [CrossRef] [Google Scholar]
  • S. Dharmaraja, R. Vinayak and K.S. Trivedi, Reliability and survivability of vehicular ad hoc networks: an analytical approach. Reliab. Eng. Syst. Saf. 153 (2016) 28–38. [CrossRef] [Google Scholar]
  • S. Din, A. Paul, A. Ahmad, S.H. Ahmed, G. Jeon and D.B. Rawat, Hierarchical architecture for 5G based software-defined intelligent transportation system, in IEEE INFOCOM 2018 – IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2018) 462–467. [Google Scholar]
  • A.M. Farooqi, M.A. Alam, S.I. Hassan and S.M. Idrees, A fog computing model for VANET to reduce latency and delay using 5G network in smart city transportation. Appl. Sci. 12 (2022) 2083. [CrossRef] [Google Scholar]
  • M. Feng, S. Mao and T. Jiang, Base station on-off switching in 5G wireless networks: approaches and challenges. IEEE Wireless Commun. 24 (2017) 46–54. [CrossRef] [Google Scholar]
  • S. Gupta and V. Gupta, Availability analysis of vehicular cloud computing, in Systems Performance Modeling. Vol. 4. Walter de Gruyter, Boston (2021) 21. [Google Scholar]
  • S. Gupta and V. Khaitan Gupta, Reliability and survivability analysis of long-term evolution vehicular ad-hoc networks: an analytical approach. J. Network Syst Manage. 29 (2021) 1–34. [CrossRef] [Google Scholar]
  • P. Hu, S. Dhelim, H. Ning and T. Qiu, Survey on fog computing: architecture, key technologies, applications and open issues. J. Network Comput. App. 98 (2017) 27–42. [CrossRef] [Google Scholar]
  • C. Huang, R. Lu and K.-K.R. Choo, Vehicular fog computing: architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55 (2017) 105–111. [CrossRef] [Google Scholar]
  • R. Hussain, F. Hussain and S. Zeadally, Integration of VANET and 5G security: a review of design and implementation issues. Future Gener. Comput. Syst. 101 (2019) 843–864. [CrossRef] [Google Scholar]
  • IoT connections forecast – mobility report (December 2022). [Google Scholar]
  • I. Kabashkin, Dependability of V2I services in the communication network of the intelligent transport systems, in 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (2019) 1–6. [Google Scholar]
  • H.A. Khattak, S.U. Islam, I.U. Din and M. Guizani, Integrating fog computing with VANETs: a consumer perspective. IEEE Commun. Stand. Mag. 3 (2019) 19–25. [CrossRef] [Google Scholar]
  • X. Ma, X. Yin and K. Trivedi, On the reliability of safety applications in VANETs. Int. J. Perform. Eng. 8 (2012) 115–130. [Google Scholar]
  • A. Masood, D. Lakew and S. Cho, Security and privacy challenges in connected vehicular cloud computing. IEEE Commun. Surv. Tutorials 22 (2020) 2725–2764. [CrossRef] [Google Scholar]
  • A. Morichetta, V.C. Pujol and S. Dustdar, A roadmap on learning and reasoning for distributed computing continuum ecosystems, 2021 IEEE International Conference on Edge Computing (EDGE) (2021) 25–31. [Google Scholar]
  • M. Petracca, P. Pagano, R. Pelliccia, M. Ghibaudi, C. Salvadori and C. Nastasi, On-board unit hardware and software design for vehicular ad-hoc networks, in Roadside Networks for Vehicular Communications: Architectures, Applications, and Test Fields. IGI Global (2013) 38–56. [CrossRef] [Google Scholar]
  • E. Qafzezi, K. Bylykbashi, P. Ampririt, M. Ikeda, K. Matsuo and L. Barolli, An intelligent approach for cloud-fog-edge computing SDN-VANETs based on fuzzy logic: effect of different parameters on coordination and management of resources. Sensors (Basel) 22 (2022) 878. [CrossRef] [PubMed] [Google Scholar]
  • A.M. Rahmani, S. Bayramov and B. Kiani Kalejahi, Internet of things applications: opportunities and threats. Wireless Pers. Commun. 122 (2022) 451–476. [CrossRef] [PubMed] [Google Scholar]
  • M. Rausand and A. Hoyland, System Reliability Theory: Models, Statistical Methods, and Applications. Vol. 396, John Wiley & Sons (2003). [Google Scholar]
  • M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical Methods and Applications. Wiley-Interscience, Hoboken, NJ (2004). [Google Scholar]
  • T. Reed, INRIX global traffic scorecard (2019). [Google Scholar]
  • R.A. Sahner, K. Trivedi and A. Puliafito, Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package. Springer Science & Business Media, New York (2012). [Google Scholar]
  • S.A.A. Shah, E. Ahmed, M. Imran and S. Zeadally, 5G for vehicular communications. IEEE Commun. Mag. 56 (2018) 111–117. [CrossRef] [Google Scholar]
  • G. Sharma, Hot redundant versus cold redundant systems. Reliab. Eng. 2 (1981) 193–197. [CrossRef] [Google Scholar]
  • M.S. Sheikh, J. Liang and W. Wang, A survey of security services, attacks, and applications for vehicular ad hoc networks (VANETs). Sensors 19 (2019) 3589. [CrossRef] [PubMed] [Google Scholar]
  • R. Shrestha, R. Bajracharya and S.Y. Nam, Challenges of future VANET and cloud-based approaches. Wireless Commun. Mobile Comput. 2018 (2018) 5603518. [CrossRef] [Google Scholar]
  • A.K. Somani and N.H. Vaidya, Understanding fault tolerance and reliability. Computer 30 (1997) 45–50. [CrossRef] [Google Scholar]
  • M. Songhorabadi, M. Rahimi, A. MoghadamFarid and M. Haghi Kashani, Fog computing approaches in IoT-enabled smart cities. J. Network Comput. App. 211 (2023) 103557. [CrossRef] [Google Scholar]
  • I. Stojmenovic, Fog computing: a cloud to the ground support for smart things and machine-to-machine networks, in 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC). IEEE (2014) 117–122. [Google Scholar]
  • A.B. Tambawal, R.M. Noor, R. Salleh, C. Chembe, M.H. Anisi, O. Michael and J. Lloret, Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommun. Syst. 70 (2019) 595–616. [CrossRef] [Google Scholar]
  • R.A. Uzcátegui, A.J. De Sucre and G. Acosta-Marum, Wave: a tutorial. IEEE Commun. Mag. 47 (2009) 126–133. [CrossRef] [Google Scholar]
  • J.S. Weber, M. Neves and T. Ferreto, VANET simulators: an updated review. J. Braz. Comput. Soc. 27 (2021) 8. [CrossRef] [Google Scholar]
  • World Health Organization, High-level meeting of the UN general assembly on global road safety. [Google Scholar]
  • L. Yao, J. Wang, X. Wang, A. Chen and Y. Wang, V2X routing in a VANET based on the hidden markov model. IEEE Trans. Intell. Transp. Syst. 19 (2018) 889–899. [CrossRef] [Google Scholar]
  • X. Yin, X. Ma and K.S. Trivedi, MAC and application level performance evaluation of beacon message dissemination in DSRC safety communication. Perform. Eval. 71 (2014) 1–24. [CrossRef] [Google Scholar]
  • F. Zantalis, G. Koulouras, S. Karabetsos and D. Kandris, A review of machine learning and IoT in smart transportation. Future Internet 11 (2019) 94. [CrossRef] [Google Scholar]
  • A. Zekri and W. Jia, Heterogeneous vehicular communications: a comprehensive study. Ad Hoc Networks 75 (2018) 52–79. [CrossRef] [Google Scholar]
  • X. Zhenchang, J. Wu, L. Wu, Y. Chen, J. Yang and P. Yu, A comprehensive survey of the key technologies and challenges surrounding vehicular ad hoc networks. ACM Trans. Intell. Syst. Technol. 12 (2021) 1–30. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.