Open Access
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1045 - 1057
Published online 12 March 2024
  • N. Abidi, M. El Herradi and S. Sakha, Digitalization and Resilience: Firm-Level Evidence During the COVID-19 Pandemic. International Monetary Fund (2022). [Google Scholar]
  • E. AboElHamd, H.M. Shamma and M. Saleh, Dynamic programming models for maximizing customer lifetime value: an overview, in Advances in Intelligent Systems and Computing. Springer International Publishing (2020) 419–445. [Google Scholar]
  • M. Abolghasemi, J. Hurley, A. Eshragh and B. Fahimnia, Demand forecasting in the presence of systematic events: cases in capturing sales promotions. Int. J. Prod. Econ. 230 (2020) 107892. [CrossRef] [Google Scholar]
  • K.L. Ailawadi, J.P. Beauchamp, N. Donthu, D.K. Gauri and V. Shankar, Communication and promotion decisions in retailing: a review and directions for future research. J. Retailing 85 (2009) 42–55. [CrossRef] [Google Scholar]
  • S.M. Ali, M.H. Rahman, T.J. Tumpa, A.A.M. Rifat and S.K. Paul, Examining price and service competition among retailers in a supply chain under potential demand disruption. J. Retail. Consum. Serv. 40 (2018) 40–47. [CrossRef] [Google Scholar]
  • J. Beckers, S. Weekx, P. Beutels and A. Verhetsel, COVID-19 and retail: the catalyst for e-commerce in Belgium? J. Retail. Consum. Serv. 62 (2021) 102645. [CrossRef] [Google Scholar]
  • G. Behzadi, M.J. O’Sullivan, T.L. Olsen and A. Zhang, Allocation flexibility for agribusiness supply chains under market demand disruption. Int. J. Prod. Res. 56 (2018) 3524–3546. [CrossRef] [Google Scholar]
  • A. Belhadi, S. Kamble, C.J.C. Jabbour, A. Gunasekaran, N.O. Ndubisi and M. Venkatesh, Manufacturing and service supply chain resilience to the COVID-19 outbreak: lessons learned from the automobile and airline industries. Technol. Forecasting Soc. Change 163 (2021) 120447. [CrossRef] [Google Scholar]
  • S. Bigdellou, S. Aslani and M. Modarres, Sustainable trade promotions in case of negative demand disruption in e-commerce. Sustainability (Switzerland) 15 (2023) 2320. [CrossRef] [Google Scholar]
  • M. Ebrahimi-Sadrabadi, B. Ostadi, M.M. Sepehri and A.H. Kashan, Optimal resource allocation model in disaster situations for maximizing the value of operational process resiliency and continuity. RAIRO: Oper. Res. 57 (2023) 539–1557. [Google Scholar]
  • R.T. Epler and M.P. Leach, An examination of salesperson bricolage during a critical sales disruption: selling during the COVID-19 pandemic. Ind. Marketing Manage. 95 (2021) 114–127. [CrossRef] [Google Scholar]
  • J.A. Forson, S.G. Gadzo, E.A. Anaman and A. Adams, Online sales adoption and financial resilience in Sub-Sahara Africa: the moderating role of ownership and enterprise size during COVID-19 crisis. Future Bus. J. 8 (2022) 42. [CrossRef] [Google Scholar]
  • V. Gupta and A. Chutani, Supply chain financing with advance selling under disruption. Int. Trans. Oper. Res. 27 (2020) 2449–2468. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Henry and J. Emmanuel Ramirez-Marquez, Generic metrics and quantitative approaches for system resilience as a function of time. Reliab. Eng. Syst. Saf. 99 (2012) 114–122. [CrossRef] [Google Scholar]
  • L.C.R. Júnior, G.F. Frederico and M.L.N. Costa, Maturity and resilience in supply chains: a systematic review of the literature. Int. J. Ind. Eng. Oper. Manage. 5 (2023) 1–25. [Google Scholar]
  • H. Kahiluoto, H. M¨akinen and J. Kaseva, Supplying resilience through assessing diversity of responses to disruption. Int. J. Oper. Prod. Manage. 40 (2020) 271–292. [CrossRef] [Google Scholar]
  • S. Korber and R.B. McNaughton, Resilience and entrepreneurship: a systematic literature review. Int. J. Entrepreneurial Behav. Res. 24 (2017) 1129–1154. [Google Scholar]
  • J. Moosavi, A.M. Fathollahi-Fard and M.A. Dulebenets, Supply chain disruption during the COVID-19 pandemic: recognizing potential disruption management strategies. Int. J. Disaster Risk Reduction 75 (2022) 102983. [CrossRef] [Google Scholar]
  • B. Ostadi and A. Abdollahi, Introducing a new mathematical formula for calculating customer perceived value using the Taguchi loss function and customer lifetime value. New Marketing Res. J. 10 (2020) 105–118. [Google Scholar]
  • B. Ostadi, M.M. Seifi and A. Husseinzadeh Kashan, A multi-objective model for resource allocation in disaster situations to enhance the organizational resilience and maximize the value of business continuity with considering events interactions. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 235 (2021) 814–830. [Google Scholar]
  • B. Ostadi, M. Ebrahimi-Sadrabadi, M.M. Sepehri and A.H. Kashan, A Systematic literature review of organization resilience, business continuity, and risk: towards process resilience and continuity. Iran. J. Manage. Stud. 16 (2023) 229–257. [Google Scholar]
  • M. Pishnamazzadeh, M.M. Sepehri and B. Ostadi, An assessment model for hospital resilience according to the simultaneous consideration of key performance indicators: a system dynamics approach. Perioperative Care Operating Room Manage. 20 (2020) 100118. [CrossRef] [Google Scholar]
  • V. Proag, Assessing and measuring resilience. Proce. Econ. Finan. 18 (2014) 222–229. [CrossRef] [Google Scholar]
  • P. Raghubir, J.J. Inman and H. Grande, The three faces of consumer promotions. California Manage. Rev. 46 (2004) 23–42. [CrossRef] [Google Scholar]
  • R. Rajesh, A.K. Agariya and C. Rajendran, Predicting resilience in retailing using grey theory and moving probability based Markov models. J. Retail. Consum. Serv. 62 (2021) 102599. [CrossRef] [Google Scholar]
  • M.H. Saad, G. Hagelaar, G. van der Velde and S.W.F. Omta, Conceptualization of SMEs’ business resilience: a systematic literature review. Cogent Bus. Manage. 8 (2021) 1938347. [CrossRef] [Google Scholar]
  • M. Sharma, S. Luthra, S. Joshi and A. Kumar, Accelerating retail supply chain performance against pandemic disruption: adopting resilient strategies to mitigate the long-term effects. J. Enterprise Inf. Manage. 34 (2021) 1844–1873. [CrossRef] [Google Scholar]
  • M. Shekarian and M. Mellat Parast, An integrative approach to supply chain disruption risk and resilience management: a literature review. Int. J. Logistics Res. App. 24 (2021) 427–455. [CrossRef] [Google Scholar]
  • W.C. Shih, Global supply chains in a post-pandemic world. Harvard Bus. Rev. 98 (2020) 82–89. [Google Scholar]
  • S. Song, W. Peng and Y. Zeng, Optimal pricing strategy of retailers considering speculative customers’ add-on items return behavior with cross-store full-reduction promotion. RAIRO: Oper. Res. 57 (2023) 551–569. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Z. Umar, M. Gubareva and T. Teplova, The impact of COVID-19 on commodity markets volatility: analyzing time-frequency relations between commodity prices and coronavirus panic levels. Res. Policy 73 (2021) 102164. [CrossRef] [Google Scholar]
  • H.J. van Heerde and S.A. Neslin, Sales promotion models, in Handbook of Marketing Decision Models. International Series in Operations Research and Management Science. Springer (2017) 13–77. [Google Scholar]
  • A. Wallin, M. Pihlajamaa and N. Malmelin, How do large corporations manage disruption? The perspective of manufacturing executives in Finland. Eur. J. Innov. Manage. 25 (2022) 19–43. [CrossRef] [Google Scholar]
  • J. Wu, Z. Chen and X. Ji, Sustainable trade promotion decisions under demand disruption in manufacturer-retailer supply chains. Ann. Oper. Res. 290 (2020) 115–143. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Xu, Y. Chen, P. He, Y. Yu and G. Bi, The selection of marketplace mode and reselling mode with demand disruptions under cap-and-trade regulation. Int. J. Prod. Res. 61 (2023) 2738–2757. [CrossRef] [Google Scholar]
  • B. Yan, Z. Chen, Y.P. Liu and X.X. Chen, Pricing decision and coordination mechanism of dual-channel supply chain dominated by a risk-aversion retailer under demand disruption. RAIRO: Oper. Res. 55 (2021) 433–456. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Ziari and M.S. Sajadieh, A joint pricing and network design model for a closed-loop supply chain under disruption (glass industry). RAIRO: Oper. Res. 56 (2022) 431–444. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.