Open Access
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1131 - 1146
Published online 12 March 2024
  • R.M. Aiex, M.G.C. Resende and C.C. Ribeiro, TTT plots: a perl program to create time-to-target plots. Optim. Lett. 1 (2007) 355–366. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Bazgan, S. Toubaline and Z. Tuza, The most vital nodes with respect to independent set and vertex cover. Discret. Appl. Math. 159 (2011) 1933–1946. [CrossRef] [Google Scholar]
  • S. Bouamama, C. Blum and A. Boukerram, A population-based iterated greedy algorithm for the minimum weight vertex cover problem. Appl. Soft Comput. 12 (2012) 1632–1639. [CrossRef] [Google Scholar]
  • M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh Kernelization, Parameterized Algorithms Ch. 2. Springer International Publishing, Cham (2015) 17–49. [CrossRef] [Google Scholar]
  • R.G. Downey and M.R. Fellows, Some ad hoc Methods: The Methods of Bounded Search Tree and Problem Kernel Ch. 3. Springer New York New York, NY (1999) 29–48. [Google Scholar]
  • M.R. Fellows, L. Jaffke, A.I. Király, F.A. Rosamond and M. Weller, What is Known About Vertex Cover Kernelization?. Springer International Publishing, Cham (2018) 330–356. [Google Scholar]
  • S. Funke, A. Nusser and S. Storandt, Placement of loading stations for electric vehicles: No detours necessary!. J. Artif. Intell. Res. 53 (2015) 633–658. [CrossRef] [Google Scholar]
  • G. Grahne and J. Zhu, Efficiently using prefix-trees in mining frequent itemsets. In: Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (2003). [Google Scholar]
  • V.V. Gusev, The vertex cover game: Application to transport networks. Omega 97 (2020) 102102. [CrossRef] [Google Scholar]
  • J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, 3rd edition. Morgan Kaufmann Boston (2012). [Google Scholar]
  • R. Jovanovic and M. Tuba, An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem. Appl. Soft Comput. 11 (2011) 5360–5366. [CrossRef] [Google Scholar]
  • R.M. Karp, Reducibility Among Combinatorial Problems. Springer, US, Boston, MA (1972) 85–103. [Google Scholar]
  • S. Lamm, C. Schulz, D. Strash, R. Williger and H. Zhang, Exactly Solving the Maximum Weight Independent Set Problem on Large Real-World Graphs. SIAM (2019) 144–158. [Google Scholar]
  • R. Li, S. Hu, H. Zhang and M. Yin, An efficient local search framework for the minimum weighted vertex cover problem. Inf. Sci. 372 (2016) 428–445. [CrossRef] [Google Scholar]
  • M.R.H. Maia, A. Plastino and P.H.V. Penna, MineReduce: An approach based on data mining for problem size reduction. Comput. Oper. Res. 122 (2020) 104995. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R.H. Maia, M. Reula, C. Parre˜no Torres, P.P. Vuppuluri, A. Plastino, U.S. Souza, S. Ceschia, M. Pavone and A. Schaerf, Metaheuristic techniques for the capacitated facility location problem with customer incompatibilities. Soft Comput. 27 (2023) 4685–4698. [CrossRef] [Google Scholar]
  • M.R.H. Maia, Í. Santana, I. Rosseti, U.S. Souza and A. Plastino, MineReduce-based metaheuristic for the minimum latency problem. In: Metaheuristics, edited by L. Di Gaspero, P. Festa, A. Nakib and M. Pavone. Springer International Publishing (2023) 88–102. [CrossRef] [Google Scholar]
  • S.L. Martins, I. Rosseti and A. Plastino, Data Mining in Stochastic Local Search Ch. 3. Springer International Publishing, Cham (2018) 39–87. [Google Scholar]
  • R. Niedermeier and P. Rossmanith, On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47 (2003) 63–77. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Plastino, B. Barbalho, L.F.M. Santos, R. Fuchshuber and S.L. Martins, Adaptive and multi-mining versions of the DM-GRASP hybrid metaheuristic. J. Heuristics 20 (2014) 39–74. [CrossRef] [Google Scholar]
  • L.F. Santos, S.L. Martins and A. Plastino, Applications of the DM-GRASP heuristic: a survey. Int. Trans. Oper. Res. 15 (2008) 387–416. [CrossRef] [MathSciNet] [Google Scholar]
  • S.J. Shyu, P.Y. Yin and B.M.T. Lin, An ant colony optimization algorithm for the minimum weight vertex cover problem. Ann. Oper. Res. 131 (2004) 283–304. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Tharwat, Classification assessment methods. Appl. Comput. Inform. 17 (2021) 168–192. [CrossRef] [Google Scholar]
  • X. Xie, X. Qin, C. Yu and X. Xu, Test-cost-sensitive rough set based approach for minimum weight vertex cover problem. Appl. Soft Comput. 64 (2018) 423–435. [CrossRef] [Google Scholar]
  • T. Zhou, Z. Lü, Y. Wang, J. Ding and B. Peng, Multi-start iterated tabu search for the minimum weight vertex cover problem. J. Comb. Optim. 32 (2016) 368–384. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.