Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2621 - 2630
DOI https://doi.org/10.1051/ro/2024042
Published online 25 June 2024
  • E. Angelelli, M.G. Speranza and Z. Tuza, Semi-online scheduling on two uniform processors. Theor. Comput. Sci. 393 (2008) 211–219. [Google Scholar]
  • A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. Cambridge University Press (1998). [Google Scholar]
  • M. Buchem and T. Vredeveld, Performance analysis of fixed assignment policies for stochastic online scheduling on uniform parallel machines. Comput. Oper. Res. 125 (2021) 105093. [CrossRef] [Google Scholar]
  • S.Y. Cai and Q.F. Yang, Semi-online scheduling on two uniform machines with the known largest size. J. Comb. Optim. 21 (2011) 393–408. [CrossRef] [MathSciNet] [Google Scholar]
  • J.S. Chadha, N. Garg, A. Kumar and V.N. Muralidhara, A competitive algorithm for minimizing weighted flow time on unrelated machines with speed augmentation, in Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, May 31–Jun 2. Bethesda, MD, USA (2009) 679–684. [Google Scholar]
  • C. Chen, H.L. Zhang and Y.F. Xu, Online machine minimization with lookahead. J. Comb. Optim. 43 (2022) 1149–1172. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Cho and S. Sahni, Bounds for list schedules on uniform processors. SIAM J. Comput. 9 (1980) 91–103. [CrossRef] [MathSciNet] [Google Scholar]
  • A.R. Choudhury, S. Das, N. Garg and A. Kumar, Rejecting jobs to minimize load and maximum flow-time. J. Comput. Syst. Sci. 91 (2018) 42–68. [CrossRef] [Google Scholar]
  • A. Dolgui, A. Quilliot and V. Kotov, A parametric scheme for online uniform-machine scheduling. Inf. Process. Lett. 99 (2006) 102–105. [CrossRef] [Google Scholar]
  • A. Dolgui, V. Kotov, A. Nekrashevich and A. Quilliot, General parametric scheme for the online uniform machine scheduling problem with two different speeds. Inf. Process. Lett. 134 (2018) 18–23. [CrossRef] [Google Scholar]
  • G. Dósa, Y. Wang, X. Han and H. Guo, Online scheduling with rearrangement on two related machines. Theor. Comput. Sci. 412 (2011) 642–653. [Google Scholar]
  • G. Dósa, A. Fuegenschuh, Z.Y. Tan, Z. Tuza and K. Weske, Tight upper bounds for semi-online scheduling on two uniform machines with known optimum. Cent. Eur. J. Oper. Res. 27 (2019) 1107–1130. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Dunke and S. Nickel, A general modeling approach to online optimization with lookahead. Omega 63 (2016) 134–153. [CrossRef] [Google Scholar]
  • F. Dunke and S. Nickel, Online optimization with gradual look-ahead. Oper. Res. 21 (2019) 2489–2523. [Google Scholar]
  • D. Dwibedy and R. Mohanty, Semi-online scheduling: a survey. Comput. Oper. Res. 139 (2022) 105646. [CrossRef] [Google Scholar]
  • M. Englert, D. Mezlaf and M. Westermann, Online makespan scheduling with job migration on uniform machines. Algorithmica 83 (2021) 3537–3566. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Epstein, A survey on makespan minimization in semi-online environments. J. Sched. 21 (2018) 269–284. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Epstein, J. Noga, S.S. Seiden, J. Sgall and G.J. Woeginger, Randomized on-line scheduling for two uniform machines. J. Sched. 4 (2001) 71–92. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Epstein and H. Zebedat-Haider, Online scheduling of unit jobs on three machines with rejection. Inf. Process. Lett. 116 (2016) 252–255. [CrossRef] [Google Scholar]
  • R.L. Graham, Bounds for certain multiprocessor anomalies. Bell Syst. Tech. J. 45 (1966) 1563–1581. [CrossRef] [Google Scholar]
  • Y. He, Y.W. Jiang and H. Zhou, Optimal preemptive online algorithms for scheduling with known largest size on two uniform machines. Acta Math. Sin. 23 (2007) 165–174. [CrossRef] [MathSciNet] [Google Scholar]
  • L.Y. Hou and L. Kang, Online and semi-online hierarchical scheduling for load balancing on uniform machines. Theor. Comput. Sci. 412 (2011) 1092–1098. [Google Scholar]
  • L. Jeż, J. Schwartz, J. Sgall and J. Békési, Lower bounds for online makespan minimization on a small number of related machines. J. Sched. 16 (2013) 539–547. [CrossRef] [MathSciNet] [Google Scholar]
  • C.W. Jiao and Q. Feng, Research on the parallel-batch scheduling with linearly lookahead model. J. Ind. Manage. Optim. 17 (2021) 3551–3558. [CrossRef] [Google Scholar]
  • C.W. Jiao, J.J. Yuan and Q. Feng, Online algorithms for scheduling unit length jobs on unbounded parallel-batch machines with linearly lookahead. Asia-Pac. J. Oper. Res. 36 (2019) 1950024. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Li and L. Shi, An on-line algorithm for some uniform processor scheduling. SIAM J. Comput. 27 (1998) 414–422. [Google Scholar]
  • W.H. Li, J.J. Yuan and S.F. Yang, Online scheduling of incompatible unit-length job families with lookahead. Theor. Comput. Sci. 543 (2014) 120–125. [Google Scholar]
  • Y. Li, L.L. Qiao and F.F. Zheng, A study of online berth and quay crane integrated allocation problem with lookahead ability. Oper. Res. Trans. 22 (2018) 28–36. [MathSciNet] [Google Scholar]
  • M. Liu, Y.F. Xu, C.B. Chu and F.F. Zheng, Online scheduling on two uniform machines to minimize the makespan. Theor. Comput. Sci. 410 (2009) 2099–2109. [Google Scholar]
  • Z. Liu and J. Zhan, Online fractional hierarchical scheduling on uniformly related machines. Comput. Oper. Res. 113 (2020) 104778–104778. [CrossRef] [MathSciNet] [Google Scholar]
  • X.R. Lu and H. Liu, Semi-online scheduling problems on two uniform machines under a grade of service provision. Theor. Comput. Sci. 489–490 (2013) 58–66. [Google Scholar]
  • R. Luo, S. Sun and W. Huang, Semi on-line scheduling problem for maximizing the minimum machine completion time on two uniform machines. J. Syst. Sci. Complexity 19 (2006) 101–107. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Mandelbaum and D. Shabtay, Scheduling unit length jobs on parallel machines with lookahead information. J. Sched. 14 (2011) 335–350. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Musitelli and J.M. Nicoletti, Competitive ratio of list scheduling on uniform machines and randomized heuristics. J. Sched. 14 (2011) 89–101. [CrossRef] [MathSciNet] [Google Scholar]
  • C.T. Ng, Z.Y. Tan, Y. He and T.C.E. Cheng, Two semi-online scheduling problems on two uniform machines. Theor. Comput. Sci. 410 (2009) 776–792. [Google Scholar]
  • H. Nouinou, T. Arbaoui and A. Yalaoui, Semi-online scheduling for minimizing the total completion time with known release dates. IFAC-PapersOnline 54 (2021) 653–658. [CrossRef] [Google Scholar]
  • J. Pan and Y. Xu, Online integrated allocation of berths and quay cranes in container terminals with 1-lookahead, in 21st Annual International Computing & Combinatorics Conference, Aug 04–06, 2015. Springer International Publishing, LNCS 9198, Beijing, China (2015). [Google Scholar]
  • J. Park, S.Y. Chang and K. Lee, Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34 (2006) 692–696. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Pinson and F.C.R. Spieksma, Online interval scheduling on two related machines: the power of lookahead. J. Comb. Optim. 38 (2019) 224–253. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Senthilkumar and S. Narayanan, Literature review of single machine scheduling problem with uniform parallel machines. Intell. Inf. Manage. 2 (2010) 457–474. [Google Scholar]
  • F.F. Zheng, Y.H. Chen, M. Liu and Y.F. Xu, Competitive analysis of online machine rental and online parallel machine scheduling problems with workload fence. J. Comb. Optim. 44 (2022) 1060–1076. [CrossRef] [MathSciNet] [Google Scholar]
  • F.F. Zheng, Y.H. Chen, M. Liu and Y.F. Xu, Semi-online scheduling on two identical parallel machines with initial-lookahead information. Asia-Pac. J. Oper. Res. (2023). DOI: 10.1142/S0217595923500033. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.