Open Access
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2637 - 2644
Published online 25 June 2024
  • G. Allon and J.A. Van Mieghem, Global dual sourcing: tailored base-surge allocation to near- and offshore production. Manage. Sci. 56 (2010) 110–124. [CrossRef] [Google Scholar]
  • J. Chen and Z. Guo, Strategic sourcing in the presence of uncertain supply and retail competition. Prod. Oper. Manage. 23 (2014) 1748–1760. [CrossRef] [Google Scholar]
  • W. Chen and H. Yang, A heuristic based on quadratic approximation for dual sourcing problem with general lead times and supply capacity uncertainty. IIE Trans. 51 (2019) 943–956. [Google Scholar]
  • C. Dong and S. Transchel, A dual sourcing inventory model for modal split transport: structural properties and optimal solution. Eur. J. Oper. Res. 283 (2020) 883–900. [CrossRef] [Google Scholar]
  • C. Dong, S. Transchel and K. Hoberg, An inventory control model for modal split transport: a tailored base-surge approach. Eur. J. Oper. Res. 264 (2018) 89–105. [Google Scholar]
  • M.C. Fu and J.Q. Hu, (s, S) inventory systems with random lead times: harris recurrence and its implication in sensiticity analysis. Probab. Eng. Inf. Sci. 8 (1994) 355–376. [CrossRef] [Google Scholar]
  • Y. Hamdouch, Y. Boulaksil and K. Ghoudi, Dual sourcing inventory management with nonconsecutive lead times from a supply chain perspective: a numerical study. OR Spect. 45 (2023) 1013–1041. [CrossRef] [Google Scholar]
  • Z. Hua, Y. Yu, W. Zhang and X. Xu, Structural properties of the optimal policy for dual-sourcing systems with general lead times. IIE Trans. 47 (2015) 841–850. [CrossRef] [Google Scholar]
  • G. Janakiraman, S. Seshadri and A. Sheopuri, Analysis of tailored base-surge policies in dual sourcing inventory systems. Manage. Sci. 61 (2015) 1547–1561. [CrossRef] [Google Scholar]
  • L.V. Kantorovich and G.P. Akilov, Functional Analysis. Pergamon Press, Oxford (1982). [Google Scholar]
  • D.H. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11 (2001) 1054–1064. [Google Scholar]
  • S. Sethi, H. Yan and H. Zhang, Inventory models with fixed costs, forecast updates, and two delivery modes. Oper. Res. 51 (2003) 321–328. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Sheopuri, G. Janakiraman and S. Seshadri, New policies for the stochastic inventory control problem with two supply sources. Oper. Res. 58 (2010) 734–745. [CrossRef] [MathSciNet] [Google Scholar]
  • K.D. Sripad, J. Ganesh and S. Sridhar, Dual sourcing systems: an asymptotic result for the cost of optimal tailored base-surge (TBS) policy. Oper. Res. Lett. 51 (2023) 338–345. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Sun and J.A. Van Mieghem, Robust dual sourcing inventory management: optimality of capped dual index policies and smoothing. Manuf. Serv. Oper. Manage. 21 (2019) 912–931. [Google Scholar]
  • S. Veeraraghavan and A. Scheller-Wolf, Now or later: a simple policy for effective dual sourcing in capacitated systems. Oper. Res. 56 (2008) 850–864. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Xin and D.A. Goldberg, Asymptotic optimality of tailored base-surge policies in dual-sourcing inventory systems. Manage. Sci. 64 (2018) 437–452. [CrossRef] [Google Scholar]
  • W. Zhang and Z. Hua, Optimal inventory policy for capacitated systems with two supply sources. Oper. Res. Lett. 41 (2013) 12–18. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Zhang, Z. Hua and S. Benjaafar, Optimal inventory control with dual-sourcing, heterogeneous ordering costs and order size constraints. Prod. Oper. Manage. 21 (2012) 564–575. [CrossRef] [Google Scholar]
  • C. Zhu, An efficient approach for dual sourcing inventory systems with tailored base-surge policies. Oper. Res. Lett. 48 (2020) 415–420. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.