Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
|
|
---|---|---|
Page(s) | 2481 - 2505 | |
DOI | https://doi.org/10.1051/ro/2024055 | |
Published online | 25 June 2024 |
- D.C. Alvarado, S. Acha, N. Shah and C.N. Markides, A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: mathematical formulation and case study. Appl. Energy 180 (2016) 491–503. [Google Scholar]
- An Overview of the ECSS Standards – CEMS UWE, www.cems.uwe.ac.uk. [Google Scholar]
- A. Avadikyan and P. Llerena, A real options reasoning approach to hybrid vehicle investments. Technol. Forecasting Soc. Change 77 (2010) 649–661. [CrossRef] [Google Scholar]
- K. Bahmani, M. Nezhadshahbodaghi and M.R. Mosavi, Optimisation of doppler search space to improve acquisition speed of GPS signals. Survey Rev. 55 (2023) 216–232. [CrossRef] [Google Scholar]
- P.P. Barros, A quick and selected overview of the expert panel on effective ways of investing in health. Arch. Publ. Health 75 (2017) 1–4. [CrossRef] [Google Scholar]
- A. Cano-Vicent, M.M. Tambuwala, S.S. Hassan, D. Barh, A.A. Aljabali, M. Birkett, A. Arjunan and A. Serrano-Aroca, Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 47 (2021) 102378. [Google Scholar]
- G. Chavers, L. Watson-Morgan, M. Smith, N. Suzuki and T. Polsgrove, NASA’s human landing system: the strategy for the 2024 mission and future sustainability, in 2020 IEEE Aerospace Conference. IEEE (2020, March) 1–9. [Google Scholar]
- Comprehensive document on the development of the country’s aerospace (2013). [In Persian] [Google Scholar]
- Comprehensive scientific map of the country (2011). [In Persian] [Google Scholar]
- P. Davison, B. Cameron and E.F. Crawley, Technology portfolio planning by weighted graph analysis of system architectures. Syst. Eng. 18 (2015) 45–58. [CrossRef] [Google Scholar]
- B. Depenbrock, T. Balint and J. Sheehy, Leveraging design principles to optimize technology portfolio prioritization, in 2015 IEEE Aerospace Conference. IEEE (2015, March) 1–10. [Google Scholar]
- M.W. Dickinson, A.C. Thornton and S. Graves, Technology portfolio management: optimizing interdependent projects over multiple time periods. IEEE Trans. Eng. Manage. 48 (2001) 518–527. [CrossRef] [Google Scholar]
- G.F. Dubos and J.H. Saleh, Spacecraft technology portfolio: probabilistic modeling and implications for responsiveness and schedule slippage. Acta Astron. 68 (2011) 1126–1146. [CrossRef] [Google Scholar]
- B. Dunbar, Technology readiness levels demystified. NASA 29 (2017) 2022. [Google Scholar]
- H.A. Fakher, M. Panahi, K. Emami, K. Peykarjou and S.Y. Zeraatkish, New insights into development of an environmental–economic model based on a composite environmental quality index: a comparative analysis of economic growth and environmental quality trend. Environ. Energy Econ. Res. 5 (2021) 1–24. [Google Scholar]
- N. Gatzert, A. Martin, M. Schmidt, B. Seith and N. Vogl, Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: a mixed-integer multistage stochastic model and a moving-horizon approach. Eur. J. Oper. Res. 290 (2021) 734–748. [CrossRef] [Google Scholar]
- S. Giove, S. Funari and C. Nardelli, An interval portfolio selection problem based on regret function. Eur. J. Oper. Res. 170 (2006) 253–264. [CrossRef] [Google Scholar]
- P. Gupta, M.K. Mehlawat and A. Saxena, Asset portfolio optimization using fuzzy mathematical programming. Inf. Sci. 178 (2008) 1734–1755. [CrossRef] [Google Scholar]
- W.M. Hawes and M.R. Duffey, Formulation of financial valuation methodologies for NASA’s human spaceflight projects. Project Manage. J. 39 (2008) 85–94. [CrossRef] [Google Scholar]
- K. Heidenberger and C. Stummer, Research and development project selection and resource allocation: a review of quantitative modelling approaches. Int. J. Manage. Rev. 1 (1999) 197–224. [CrossRef] [Google Scholar]
- J.P. Ignizio, Goal Programming and Extensions. Lexington Books (1976). [Google Scholar]
- G.T. Jesus, S.N. Itami, T.Y. Segantine and M.F.C. Junior, Innovation path and contingencies in the China–Brazil Earth Resources Satellite program Acta Astron. 178 (2021) 382–391. [CrossRef] [Google Scholar]
- R. Kamali, S. Mahmoodi and M.T. Jahandideh, Optimization of multi-period portfolio model after fitting best distribution. Finan. Res. Lett. 30 (2019) 44–50. [CrossRef] [Google Scholar]
- F. Kucukbay and C. Araz, Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming. Int. J. Optim. Control: Theor. App. (IJOCTA) 6 (2016) 121–128. [Google Scholar]
- C. Li, F. Liu, X. Tan and Y. Du, A methodology for selecting a green technology portfolio based on synergy. Int. J. Prod. Res. 48 (2010) 7289–7302. [CrossRef] [Google Scholar]
- B. Li, Y. Zhu, Y. Sun, G. Aw and K.L. Teo, Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Appl. Math. Modell. 56 (2018) 539–550. [CrossRef] [Google Scholar]
- S.O. Mariager, C.M. Schlepütz, M. Aagesen, C.B. Sørensen, E. Johnson, P.R. Willmott and R. Feidenhans’l, High-resolution three-dimensional reciprocal space mapping of semiconductor nanostructures. Phys. Status Solidi A 206 (2009) 1771–1774. [CrossRef] [Google Scholar]
- M.M. Mielke, T. Booth, M. Greenberg, D.M. Gaudiosi, C. Martinez, S.P. Sapers, R. Cline and R.A. Srinivas, Applications of ultrafast lasers in microfabrication. J. Laser Micro Nanoeng. 8 (2013) 115. [CrossRef] [Google Scholar]
- J. Mieloszyk, A. Tarnowski, M. Kowalik, R. Perz and W. Rzadkowski, Preliminary design of 3D printed fittings for UAV. Aircraft Eng. Aerospace Technol. 91 (2019) 756–760. [CrossRef] [Google Scholar]
- J. Mihm, C. Loch and A. Huchzermeier, Problem-solving oscillations in complex engineering projects. Manage. Sci. 49 (2003) 733–750. [CrossRef] [Google Scholar]
- D.A. Milhomem and M.J.P. Dantas, Analysis of new approaches used in portfolio optimization: a systematic literature review. Production 30 (2020) e20190144. [CrossRef] [Google Scholar]
- D. Miranda, 2020 NASA Technology Taxonomy (2020) (No. HQ-E-DAA-TN76545). [Google Scholar]
- N. Mohebbi and A. Najafi, Multi-cycle portfolio optimization with dynamic planning approach. Ind. Manage. Stud. 16 (2018) 1–26. [Google Scholar]
- G. Nie, X. Wang, L. Shen and Y. Cai, A fast method for the acquisition of weak long-code signal. GPS Solutions 24 (2020) 1–3. [CrossRef] [Google Scholar]
- A.L. Olechowski, S.D. Eppinger, N. Joglekar and K. Tomaschek, Technology readiness levels: shortcomings and improvement opportunities. Syst. Eng. 23 (2020) 395–408. [CrossRef] [Google Scholar]
- Organization for Economic Cooperation and Development, The Space Economy at a Glance 2014. OECD Publishing (2014). [Google Scholar]
- T. Pengra and J. Stofan, NASA education recommendation report-education design team 2011 (No. NASA/SP-2011-581) (2011). [Google Scholar]
- D.R. Probert, C.J.P. Farrukh and R. Phaal, Technology roadmapping – developing a practical approach for linking resources to strategic goals. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217 (2003) 1183–1195. [CrossRef] [Google Scholar]
- F. Richter, Global economy to end decade on a low note. https://www.statista.com/ (2019). [Google Scholar]
- B.J. Sauser, R.R. Reilly and A.J. Shenhar, Why projects fail? How contingency theory can provide new insights – a comparative analysis of NASA’s Mars Climate Orbiter loss. Int. J. Project Manage. 27 (2009) 665–679. [CrossRef] [Google Scholar]
- M. Shaverdi and S. Yaghoubi, A technology portfolio optimization model considering staged financing and moratorium period under uncertainty. RAIRO-Oper. Res. 55 (2021) S1487–S1513. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Shaverdi, S. Yaghoubi and H. Ensafian, A multi-objective robust possibilistic model for technology portfolio optimization considering social impact and different types of financing. Appl. Soft Comput. 86 (2020) 105892. [CrossRef] [Google Scholar]
- A. Shenhar, D. Dvir, D. Milosevic, J. Mulenburg, P. Patanakul, R. Reilly and H. Thamhain, Toward a NASA-specific project management framework. Eng. Manage. J. 17 (2005) 8–16. [CrossRef] [Google Scholar]
- B. Space, Global Space Industry Dynamics: Research Paper for Australian Government, Department of Industry, Innovation and Science. Bryce Space and Technology (2017). [Google Scholar]
- Y. Sun, G. Aw, K.L. Teo, Y. Zhu and X. Wang, Multi-period portfolio optimization under probabilistic risk measure. Finan. Res. Lett. 18 (2016) 60–66. [CrossRef] [Google Scholar]
- D. Terrier, NASA Strategic Technology Investment Plan 2017. NASA (2017) 1–40. [Google Scholar]
- J. Wei, Y. Yang, M. Jiang and J. Liu, Dynamic multi-period sparse portfolio selection model with asymmetric investors’ sentiments. Expert Syst. App. 177 (2021) 114945. [CrossRef] [Google Scholar]
- Y. Wu, C. Xu, Y. Ke, K. Chen and X. Sun, An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: case study in Zhejiang, China. Energy 143 (2018) 295–309. [Google Scholar]
- Z. Wu, L. Yang, Y. Fei and X. Wang, Regularization methods for sparse ESG-valued multi-period portfolio optimization with return prediction using machine learning. Expert Syst. App. 17 (2023) 120850. [CrossRef] [Google Scholar]
- J.R. Yu and W.Y. Lee, Portfolio rebalancing model using multiple criteria. Eur. J. Oper. Res. 209 (2011) 166–175. [CrossRef] [Google Scholar]
- Y. Yu, X. Deng, C. Chen and K. Cheng, Research on fuzzy multi-objective multi-period portfolio by hybrid genetic algorithm with wavelet neural network. Eng. Lett. 28 (2020) Jun 1. [Google Scholar]
- D. Zhao, L. Bai, Y. Fang and S. Wang, Multi-period portfolio selection with investor views based on scenario tree. Appl. Math. Comput. 148 (2022) 126813. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.