Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2289 - 2319
DOI https://doi.org/10.1051/ro/2024077
Published online 10 June 2024
  • Q. An, F. Meng, B. Xiong, Z. Wang and X. Chen, Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach. Ann. Oper. Res. 290 (2020) 707–729. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • P. Bansal and A. Mehra, Malmquist-Luenberger productivity indexes for dynamic network DEA with undesirable outputs and negative data. RAIRO: Oper. Res. 56 (2022) 649–687. [Google Scholar]
  • W. Briec, C. Comes and K. Kerstens, Temporal technical and profit efficiency measurement: definitions, duality and aggregation results. Int. J. Prod. Econ. 103 (2006) 48–63. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • X. Chen, X. Liu and Z. Gong, Extended DEA model under type-2 fuzzy environment: an application of rural poverty reduction in Hainan province. Kybernetes 48 (2018) 1095–1133. [Google Scholar]
  • Y. Chen, L. Ni and K. Liu, Does China’s new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach. Technol. Forecasting Soc. Change 173 (2021) 121161. [Google Scholar]
  • J. Chen, Y. Zhang, W. Wang, C. Yang, J. Li and Y. Wu, The efficiency of consumption poverty alleviation and improvement measures in Guizhou, China. Energy 248 (2022) 123572. [Google Scholar]
  • J. Cifuentes-Faura and U. Faura-Martínez, Measuring spanish airport performance: a bootstrap data envelopment analysis of efficiency. Util. Policy 80 (2023) 101457. [Google Scholar]
  • M. Dia, P.M. Takouda and A. Golmohammadi, Assessing the performance of Canadian credit unions using a three-stage network bootstrap DEA. Ann. Oper. Res. 311 (2022) 641–673. [Google Scholar]
  • M. Dong, M. Wang, R. Ma and G. Yang, Impact factors of targeted anti-poverty in Liupanshan contiguous impoverished areas – Basing on three-stage DEA & Tobit models. Soft Sci. (in Chinese) 34 (2020) 72–78. [Google Scholar]
  • H. Fukuyama, M. Tsionas and Y. Tan, Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: application to the Chinese banking industry. Eur. J. Oper. Res. 307 (2023) 1360–1373. [Google Scholar]
  • H. Fukuyama, M. Tsionas and Y. Tan, Incorporating causal modeling into data envelopment analysis for performance evaluation. Ann. Oper. Res. (2023). Online prepublication. DOI: 10.1007/s10479-023-05486-0. [Google Scholar]
  • N.N. Habibov and L. Fan, Comparing and contrasting poverty reduction performance of social welfare programs across jurisdictions in Canada using Data Envelopment Analysis (DEA): an exploratory study of the era of devolution. Eval. Prog. Planning 33 (2010) 457–467. [Google Scholar]
  • C. Kao and S. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
  • E. Koçak, H. Kınacı and K. Shehzad, Environmental efficiency of disaggregated energy R&D expenditures in OECD: a bootstrap DEA approach. Environ. Sci. Pollution Res. 28 (2021) 19381–19390. [Google Scholar]
  • J. Li, Z. Wang, X. Cheng, J. Shuai, C. Shuai and J. Liu, Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China. Energy 201 (2020) 117631. [Google Scholar]
  • W.B. Liu, D.Q. Zhang, W. Meng, X.X. Li and F. Xu, A study of DEA models without explicit inputs. Omega 39 (2011) 472–480. [CrossRef] [Google Scholar]
  • W. Liu, Z. Zhou, C. Ma, D. Liu and W. Shen, Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015) 74–87. [Google Scholar]
  • W. Lu, Q.L. Kweh and C. Wang, Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry. Ann. Oper. Res. 296 (2021) 163–194. [Google Scholar]
  • M. Meng and T. Pang, Operational efficiency analysis of China’s electric power industry using a dynamic network slack-based measure model. Energy 251 (2022) 123898. [Google Scholar]
  • K.F. See, N.M. Hamzah and M. Yu, Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework. Soc.-Econ. Planning Sci. 78 (2021) 101044. [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks. Manage. Sci. 45 (1999) 1270–1288. [Google Scholar]
  • B.W. Silverman, Density Estimation for Statistics and Data Analysis. Routledge, New York (2018). [Google Scholar]
  • L. Simar and P.W. Wilson, Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manage. Sci. 44 (1998) 49–61. [Google Scholar]
  • D. Tirtosuharto, The impact of fiscal efficiency on poverty reduction in Indonesia: institutional factor and geographical differences. J. Geog. Syst. 24 (2022) 67–93. [Google Scholar]
  • K. Tone and M. Tsutsui, Dynamic DEA with network structure: a slacks-based measure approach. Omega 42 (2014) 124–131. [Google Scholar]
  • Y. Wang, Y. Song, G. Chen, S. Huang, M. Wang and Y. Pan, The measurement and temporal and spatial evolution of tourism poverty alleviation efficiency in the Liupan mountain area of Gansu Province, China. Sustainability 13 (2021) 12637. [Google Scholar]
  • H. Xiao, N. Wang and S. Wang, Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index. Oper. Res. 23 (2023) 27. [Google Scholar]
  • X. Xiong, G. Yang and Z. Guan, Assessing R&D efficiency using a two-stage dynamic DEA model: a case study of research institutes in the Chinese Academy of Sciences. J. Informetrics 12 (2018) 784–805. [Google Scholar]
  • G. Yang, W. Shen, D. Zhang and W. Liu, Extended utility and DEA models without explicit input. J. Oper. Res. Soc. 65 (2014) 1212–1220. [CrossRef] [Google Scholar]
  • G. Yang, T. Zhang and M. Dong, Research on the efficiency of agricultural production and poverty reduction efficiency in rural China. J. Quant. Tech. Econ. (in Chinese) 37 (2020) 46–65. [Google Scholar]
  • J. Yang, Y. Wu, J. Wang, C. Wan and Q. Wu, A study on the efficiency of tourism poverty alleviation in ethnic regions based on the staged DEA model. Front. Psychol. 12 (2021) 642966. [Google Scholar]
  • F. Yang, D. Wang, L. Zhao and F. Wei, Efficiency evaluation for regional industrial water use and wastewater treatment systems in China: a dynamic interactive network slacks-based measure model. J. Environ. Manage. 279 (2021) 111721. [Google Scholar]
  • G. Yang, Y. Wang, H. Chang and Q. Chen, Evaluating anti-poverty policy efficiencies in China: meta-frontier analysis using the two-stage data envelopment analysis model. Chin. Agric. Econ. Rev. 14 (2022) 416–442. [Google Scholar]
  • H. Yu, Y. Zhang, A. Zhang, K. Wang and Q. Cui, A comparative study of airline efficiency in China and India: a dynamic network DEA approach. Res. Transp. Econ. 76 (2019) 100746. [Google Scholar]
  • H. Zameer, M. Shahbaz and X.V. Vo, Reinforcing poverty alleviation efficiency through technological innovation, globalization, and financial development. Technol. Forecasting Soc. Change 161 (2020) 120326. [Google Scholar]
  • Y. Zha, N. Liang, M. Wu and Y. Bian, Efficiency evaluation of banks in China: a dynamic two-stage slacks-based measure approach. Omega 60 (2016) 60–72. [CrossRef] [Google Scholar]
  • Y. Zhong and Z. He, Measuring and space-time evolution of national-level poverty counties development efficiency in China based on DEA and ESDA. Chin. Population Res. Environ. (in Chinese) 26 (2016) 130–136. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.