Open Access
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2107 - 2121
Published online 24 May 2024
  • J. Wu and H. Li, Domination and its applications in ad hoc wireless networks with unidirectional links, in Proceedings of International Conference on Parallel Processing. IEEE (2000) 189–197. [Google Scholar]
  • E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman 2-domination in graphs. Discrete Appl. Math. 204 (2016) 22–28. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Hajibaba and N.J. Rad, Some notes on the Roman domination number and Italian domination number in graphs. J. Phys.: Conf. Ser. 890 (2017) 012123. [CrossRef] [Google Scholar]
  • T.W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs. CRC Press (1998). [Google Scholar]
  • H. Gao, C. Xi, K. Li, Q. Zhang and Y. Yang, The Italian domination numbers of generalized Petersen graphs P (n, 3). Mathematics 7 (2019) 714. [CrossRef] [Google Scholar]
  • J. Varghese and S. Aparna Lakshmanan, Italian domination on Mycielskian and Sierpinski graphs. Discrete Math. Algorithms App. 13 (2021) 2150037. [CrossRef] [Google Scholar]
  • M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II. AKCE Int. J. Graphs Comb. 17 (2020) 966–984. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Padamutham and V.S.R. Palagiri, Complexity of Roman {2}-domination and the double Roman domination in graphs. AKCE Int. J. Graphs Comb. 17 (2020) 1081–1086. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Khandelwal, K. Srivastava and G. Saran, On Roman domination of graphs using a genetic algorithm, in Proceedings of International Conference on Computational Methods and Data Engineering, ICMDE. Vol. 1. Springer Singapore (2020) 133–147. [Google Scholar]
  • S.O. Kimbrough, G.J. Koehler, M. Lu and D.H. Wood, On a feasible–infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190 (2008) 310–327. [CrossRef] [Google Scholar]
  • K.S. Tang, K.F. Man, S. Kwong and Q. He, Genetic algorithms and their applications. IEEE Signal Process. Mag. 13 (1996) 22–37. [CrossRef] [Google Scholar]
  • H. Gao, T. Feng and Y. Yang, Italian domination in the Cartesian product of paths. J. Comb. Optim. 41 (2021) 526–543. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.