Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3093 - 3106
DOI https://doi.org/10.1051/ro/2024113
Published online 01 August 2024
  • P. Andersen and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • C.T. Chen, A fuzzy approach to select the location of the distribution center. Fuzzy Sets Syst. 118 (2001) 65–73. [CrossRef] [Google Scholar]
  • W.D. Cook and J. Zhu, Rank order data in DEA: a general framework. Eur. J. Oper. Res. 174 (2006) 1021–1038 [CrossRef] [Google Scholar]
  • W.W. Cooper, K.S. Park and G. Yu, IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manage. Sci. 45 (1999) 597–607. [CrossRef] [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, editiors. Handbook on Data Envelopment Analysis. Vol. 164. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  • J. Doyle and R. Green, Efficiency and cross-efficiency in DEA: derivations, meanings and uses. J. Oper. Res. Soc. 45 (1994) 567–578. [CrossRef] [Google Scholar]
  • R.M. García-Morales, A. Baquerizo and M.A. Losada, Port management and multiple-criteria decision making under uncertainty. Ocean Eng. 104 (2015) 31–39. [CrossRef] [Google Scholar]
  • S.I. Gass, The analytic hierarchy process – an exposition. Oper. Res. 49 (2001) 469–486. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Greco, B. Matarazzo and R. Slowinski, Rough set approach to multi-attribute choice and ranking problems, in Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems, edited by G. Fandel and T. Gal. Vol. 448. Springer, Berlin, Heidelberg (1997). [Google Scholar]
  • R.W. Hipel, Fuzzy set techniques in decision making. IFAC Proc. Vol. 15 (1982) 423–431. [CrossRef] [Google Scholar]
  • J. Hokkanen, R. Lahdelma and P. Salminen, Multicriteria decision support in a technology competition for cleaning polluted soil in Helsinki. J. Environ. Manage. 60 (2000) 339–348. [CrossRef] [Google Scholar]
  • B. Jana and S.N. Mohanty, An intuitionistic fuzzy logic models for multicriteria decision making under uncertainty. J. Inst. Eng. (India) Ser. C 98 (2017) 197–201. [CrossRef] [Google Scholar]
  • S. Jharkharia and R. Shankar, Selection of logistics service provider: an analytic network process (ANP) approach. Omega 35 (2007) 274–289. [CrossRef] [Google Scholar]
  • R. Lahdelma, J. Hokkanen and P. Salminen, SMAA-stochastic multiobjective acceptability analysis. Eur. J. Oper. Res. 106 (1998) 137–143. [CrossRef] [Google Scholar]
  • R. Lahdelma and P. Salminen, SMAA-2: stochastic multicriteria acceptability analysis for group decision making. Oper. Res. 49 (2001) 444–454. [CrossRef] [Google Scholar]
  • R. Lahdelma, K. Miettinen and P. Salminen, Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur. J. Oper. Res. 147 (2003) 117–127. [CrossRef] [Google Scholar]
  • A. Rebai, Bbtopsis: a bag based technique for order preference by similarity to ideal solution. Fuzzy Sets Syst. 60 (1993) 143–162. [CrossRef] [Google Scholar]
  • T.L. Saaty, How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48 (1990) 9–26. [CrossRef] [Google Scholar]
  • T.L. Saaty, Decision making – the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 13 (2004) 1–35. [CrossRef] [Google Scholar]
  • L. Simar and P.W. Wilson, Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Manage. Sci. 44 (1998) 49–61. [CrossRef] [Google Scholar]
  • T. Tervonen and R. Lahdelma, Implementing stochastic multicriteria acceptability analysis. Eur. J. Oper. Res. 178 (2007) 500–513. [CrossRef] [Google Scholar]
  • D. Valencia, R.E. Lillo and J. Romo, A Kendall correlation coefficient between functional data. Adv. Data Anal. Classification 13 (2019) 1083–1103. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.M. Wang, R. Greatbanks and J.B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. [Google Scholar]
  • R.R. Yager, On ordered weighted averaging aggregation operations in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1988) 80–87. [CrossRef] [Google Scholar]
  • G.T. Yeo, A.K.Y. Ng, T.W. Lee and Z. Yang, Modelling port choice in an uncertain environment. Maritime Policy Manage. 41 (2014) 251–267. [CrossRef] [Google Scholar]
  • F. Zhu, P.A. Zhong and Y. Sun, Multi-criteria group decision making under uncertainty: application in reservoir flood control operation. Environ. Modell. Softw. 100 (2018) 236–251. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.