Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 2767 - 2782
DOI https://doi.org/10.1051/ro/2024107
Published online 02 July 2024
  • J. Abate and W. Whitt, Transient behavior of the M/M/1 queue via Laplace transforms. Adv. Appl. Probab. 20 (1988) 145–178. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Akar and E. Arikan, A numerically efficient method for the MAP/D/1/K queue via rational approximations. Queueing syst. 22 (1996) 97–120. [CrossRef] [Google Scholar]
  • R.O. Al-Seedy, A.A. El-Sherbiny, S.A. El-Shehawy and S.I. Ammar, Transient solution of the M/M/c queue with balking and reneging. Comput. Math. Appl. 57 (2009) 1280–1285. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Ayyappan and S. Shyamala, Time dependent solution of MX/G/1 queuing model with bernoulli vacation and balking. Int. J. Comput. Appl. 61 (2013). [Google Scholar]
  • F.P. Barbhuiya and U.C. Gupta, A difference equation approach for analysing a batch service queue with the batch renewal arrival process. J. Differ. Equ. Appl. 25 (2019) 233–242. [CrossRef] [Google Scholar]
  • F.P. Barbhuiya and U.C. Gupta, Analytical and computational aspects of the infinite buffer single server n policy queue with batch renewal input. Comput. Oper. Res. 118 (2020) 104916. [CrossRef] [MathSciNet] [Google Scholar]
  • V.E. Benes, On queues with Poisson arrivals. Ann. Math. Stat. (1957) 670–677. [CrossRef] [Google Scholar]
  • M.S. Bratiychuk and W. Kempa, Application of the superposition of renewal processes to the study of batch arrival queues. Queueing Syst. 44 (2003) 51–67. [CrossRef] [MathSciNet] [Google Scholar]
  • M.S. Bratiychuk and W. Kempa, Explicit Formulae for the Queue Length Distribution of Batch Arrival Systems (2004). [Google Scholar]
  • G. Brière and M.L. Chaudhry, Computational analysis of single-server bulk-arrival queues: GIX/M/1. Queueing Syst. 2 (1987) 173–185. [CrossRef] [Google Scholar]
  • J.W. Brown and R.V. Churchill, Complex Variables and Applications. McGraw-Hill (2009). [Google Scholar]
  • D.G. Champernowne, An elementary method of solution of the queueing problem with a single server and constant parameters. J. R. Stat. Soc. Ser. B 18 (1956) 125–128. [CrossRef] [Google Scholar]
  • R.H. Chan, K.-C. Ma and W.-K. Ching, Boundary value methods for solving transient solutions of markovian queueing networks. Appl. Math. Comput. 172 (2006) 690–700. [MathSciNet] [Google Scholar]
  • B.W. Conolly, A difference equation technique applied to the simple queue. J. R. Stat. Soc. Ser. B 20 (1958) 165–167. [CrossRef] [Google Scholar]
  • S. Dharmaraja and R. Kumar, Transient solution of a Markovian queuing model with heterogeneous servers and catastrophes. Opsearch 52 (2015) 810–826. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Easton, M.L. Chaudhry and M.J.M. Posner, Some corrected results for the queue GIX/M/1. Eur. J. Oper. Res. 18 (1984) 131–132. [CrossRef] [Google Scholar]
  • G. Easton, M.L. Chaudhry and M.J.M. Posner, Some numerical results for the queuing system GIX/M/1. Eur. J. Oper. Res. 18 (1984) 133–135. [CrossRef] [Google Scholar]
  • S.N. Elaydi, An Introduction to Difference Equations. Springer, New York (2005). [Google Scholar]
  • W.K. Grassmann, Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4 (1977) 47–53. [CrossRef] [Google Scholar]
  • U.C. Gupta, N. Kumar and F.P. Barbhuiya, A queueing system with batch renewal input and negative arrivals. Appl. Probab. Stoch. Proc. (2020) 143–157. [CrossRef] [Google Scholar]
  • W.H. Kaczynski, L.M. Leemis and J.H. Drew, Transient queueing analysis. INFORMS J. Comput. 24 (2012) 10–28. [CrossRef] [MathSciNet] [Google Scholar]
  • B.R.K. Kashyap and M.L. Chaudhry, An Introduction to Queueing Theory. Kingston, Ont.: A&A Publications (1988). [Google Scholar]
  • W.D. Kelton, Transient exponential-Erlang queues and steady-state simulation. Commun. ACM 28 (1985) 741–749. [CrossRef] [Google Scholar]
  • W.M. Kempa, A comprehensive study on the queue-size distribution in a finite-buffer system with a general independent input flow. Perform. Eval. 108 (2017) 1–15. [CrossRef] [Google Scholar]
  • W.M. Kempa and M. Kobielnik, Transient solution for the queue-size distribution in a finite-buffer model with general independent input stream and single working vacation policy. Appl. Math. Model. 59 (2018) 614–628. [Google Scholar]
  • A. Kuznetsov, On the convergence of the Gaver–Stehfest algorithm. SIAM J. Numer. Anal. 51 (2013) 2984–2998. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Ledermann and G.E.H. Reuter, Spectral theory for the differential equations of simple birth and death processes. Phil. Trans. R. Soc. London Ser. A Math. Phys. Sci. 246 (1954) 321–369. [Google Scholar]
  • P. Leguesdron, J. Pellaumail, G. Rubino and B. Sericola, Transient analysis of the M/M/1 queue. Adv. Appl. Probab. 25 (1993) 702–713. [Google Scholar]
  • P.R. Parthasarathy, A transient solution to an M/M/1 queue: a simple approach. Adv. Appl. Probab. 19 (1987) 997–998. [CrossRef] [MathSciNet] [Google Scholar]
  • P.R. Parthasarathy and M. Sharafali, Transient solution to the many-server Poisson queue: A simple approach. J. Appl. Probab. 26 (1989) 584–594. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Rubino, Transient analysis of Markovian queueing systems: A survey with focus on closed forms and uniformization. Queueing Theory 2 Adv. Trends (2021) 269–307. [CrossRef] [Google Scholar]
  • J.T. Runnenburg, Probabilistic Interpretation of Some Formulae in Queueing Theory. Stichting Mathematisch Centrum, Zuivere Wiskunde (1958). [Google Scholar]
  • O.P. Sharma and U.C. Gupta, Transient behaviour of an M/M/1/N queue. Stoch. Process. Appl. 13 (1982) 327–331. [CrossRef] [Google Scholar]
  • O.P. Sharma and B.D. Bunday, A simple formula for the transient state probabilities of an M/M/1/∞ queue. Optimization 40 (1997) 79–84. [CrossRef] [MathSciNet] [Google Scholar]
  • O.P. Sharma and A.M.K. Tarabia, On the busy period of a multichannel Markovian queue. Stoch. Anal. Appl. 18 (2000) 859–869. [CrossRef] [Google Scholar]
  • R. Sudhesh, A. Azhagappan and S. Dharmaraja, Transient analysis of M/M/1 queue with working vacation, heterogeneous service and customers’ impatience. RAIRO:RO 51 (2017) 591–606. [CrossRef] [EDP Sciences] [Google Scholar]
  • L. Takács, Investigation of waiting time problems by reduction to Markov processes. Acta Math. Hung. 6 (1955) 101–129. [CrossRef] [Google Scholar]
  • L. Takács, Transient behavior of single-server queuing processes with recurrent input and exponentially distributed service times. Oper. Res. 8 (1960) 231–245. [CrossRef] [Google Scholar]
  • H. Takagi and D.-A. Wu, Multiserver queue with semi-markovian batch arrivals. Comput. Commun. 27 (2004) 549–556. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.