Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 3805 - 3821 | |
DOI | https://doi.org/10.1051/ro/2024136 | |
Published online | 24 September 2024 |
- L. Wang, Food supply chain sustainability strategy for fresh retailer and multi-output random fresh suppliers after COVID-19. Sustainability (Switzerland) 15 (2023) 546. [Google Scholar]
- L. Gelain, L. van der Wielen, W.M. van Gulik, J. Geraldo da Cruz Pradella and A. Carvalho da Costa, Mathematical modelling for the optimization of cellulase production using glycerol for cell growth and cellulose as the inducer substrate. Chem. Eng. Sci. X 8 (2020) 100085. [Google Scholar]
- M. Shutaywi and Z. Shah, Mathematical Modeling and numerical simulation for nanofluid flow with entropy optimization. Case Stud. Thermal Eng. 26 (2021) 101198. [CrossRef] [Google Scholar]
- R. Pierott, A.W.A. Hammad, A. Haddad, S. Garcia and G. Falcón, A mathematical optimisation model for the design and detailing of reinforced concrete beams. Eng. Struct. 245 (2021) 112861. [CrossRef] [Google Scholar]
- N. Sanghvi, D. Vora, J. Patel and A. Malik, Optimization of end milling of Inconel 825 with coated tool: a mathematical comparison between GRA, TOPSIS and Fuzzy Logic methods. Mater. Today Proc. 38 (2021) 2301–2309. [CrossRef] [Google Scholar]
- M. Gutiérrez, Making better decisions by applying mathematical optimization to cost accounting: an advanced approach to multi-level contribution margin accounting. Heliyon 7 (2021) e06096. [CrossRef] [PubMed] [Google Scholar]
- H.D. Perez, S. Amaran, E. Erisen, J.M. Wassick and I.E. Grossmann, Optimization of extended business processes in digital supply chains using mathematical programming. Comput. Chem. Eng. 152 (2021) 107323. [CrossRef] [Google Scholar]
- B.C. Barroso, R.T.N. Cardoso and M.K. Melo, Performance analysis of the integration between Portfolio Optimization and Technical Analysis strategies in the Brazilian stock market. Expert Syst. Appl. 186 (2021) 115687. [CrossRef] [Google Scholar]
- R. Faia, T. Pinto, Z. Vale and J.M. Corchado, Portfolio optimization of electricity markets participation using forecasting error in risk formulation. Int. J. Electr. Power Energy Syst. 129 (2021) 106739. [CrossRef] [Google Scholar]
- M.J. Dehghani and C.K. Yoo, Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses. Energy 205 (2020) 118069. [CrossRef] [Google Scholar]
- F. Guo, Y. Li, Z. Xu, J. Qin and L. Long, Multi-objective optimization of multi-energy heating systems based on solar, natural gas, and airenergy. Sustain. Energy Technol. Assess. 47 (2021) 101394. [Google Scholar]
- J.A. Okolie, E.I. Epelle, S. Nanda, D. Castello, A.K. Dalai and J.A. Kozinski, Modeling and process optimization of hydrothermal gasification for hydrogen production: a comprehensive review. J. Supercrit Fluids 173 (2021) 105199. [CrossRef] [Google Scholar]
- J. Zhou, Y. Wu, Z. Zhong, C. Xu, Y. Ke and J. Gao, Modeling and configuration optimization of the natural gas-wind-photovoltaic-hydrogen integrated energy system: a novel deviation satisfaction strategy. Energy Convers. Manag. 243 (2021) 114340. [CrossRef] [Google Scholar]
- R. Liu, Y. Lin, G. Xu, Y. Li, R. Premalatha and K. Chandran, Optimized hybridized mathematical model for wastewater treatment and energy generation using microbial fuel cells. Sustain. Energy Technol. Assess. 47 (2021) 101348. [Google Scholar]
- N.R. Ware, S.P. Singh and D.K. Banwet, A mixed-integer non-linear program to model dynamic supplier selection problem. Expert Syst. Appl. 41 (2014) 671–678. [CrossRef] [Google Scholar]
- M.T. Ahmad and S. Mondal, Dynamic supplier selection model under two-echelon supply network. Expert Syst Appl. 65 (2016) 255–270. [CrossRef] [Google Scholar]
- M. Farhat, A. Akbalik, A.B. Hadj-Alouane and N. Sauer, Lot sizing problem with batch ordering under periodic buyback contract and lost sales. Int. J. Prod. Econ. 208 (2019) 500–511. [Google Scholar]
- L.E. Cárdenas-Barrón, J.L. González-Velarde and G. Treviño-Garza, A new approach to solve the multi-product multi-period inventory lot sizing with supplier selection problem. Comput. Oper. Res. 64 (2015) 225–232. [CrossRef] [MathSciNet] [Google Scholar]
- D. Choudhary and R. Shankar, A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Comput. Ind. Eng. 71 (2014) 1–9. [Google Scholar]
- D. Choudhary and R. Shankar, Modeling and analysis of single item multi-period procurement lot-sizing problem considering rejections and late deliveries. Comput. Ind. Eng. 61 (2011) 1318–1323. [CrossRef] [Google Scholar]
- D. Choudhary and R. Shankar, Joint decision of procurement lot-size, supplier selection, and carrier selection. J. Purchas. Supply Manag. 19 (2013) 16–26. [CrossRef] [Google Scholar]
- M. Firouz, B.B. Keskin and S.H. Melouk, An integrated supplier selection and inventory problem with multi-sourcing and lateral transshipments. Omega (Westport) 70 (2017) 77–93. [Google Scholar]
- W. Chen and Y. Zou, An integrated method for supplier selection from the perspective of risk aversion. Appl. Soft. Comput. 54 (2017) 449–455. [CrossRef] [Google Scholar]
- M. Rodoplu, T. Arbaoui and A. Yalaoui, Joint energy capacity and production planning optimization in flow-shop systems. Appl. Math. Model. 102 (2022) 706–725. [CrossRef] [MathSciNet] [Google Scholar]
- T. Aouam, K. Geryl, K. Kumar and N. Brahimi, Production planning with order acceptance and demand uncertainty. Comput. Oper. Res. 91 (2018) 145–159. [CrossRef] [MathSciNet] [Google Scholar]
- J. Jang and B. Do Chung, Aggregate production planning considering implementation error: a robust optimization approach using bi-level particle swarm optimization. Comput. Ind. Eng. 142 (2020) 106367. [CrossRef] [Google Scholar]
- E.B. Tirkolaee, N.S. Aydin and I. Mahdavi, A bi-level decision-making system to optimize a robust-resilientsustainable aggregate production planning problem. Expert Syst. Appl. 228 (2023) 120476. [CrossRef] [Google Scholar]
- F. Li, F. Qian, W. Du, M. Yang, J. Long and V. Mahalec, Refinery production planning optimization under crude oil quality uncertainty. Comput. Chem. Eng. 151 (2021) 107361. [CrossRef] [Google Scholar]
- A. Guise, J. Oliveira, S. Teixeira and Â. Silva, Development of tools to support the production planning in a textile company. Proc. Comput. Sci. 219 (2023) 889–896. [CrossRef] [Google Scholar]
- S. Prasad, Elementary Statistical Methods. Springer (2023). [Google Scholar]
- B. Liu, Uncertainty Theory. Springer Uncertainty Research. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). [CrossRef] [Google Scholar]
- M. Qasim, K.Y. Wong and Komarudin, A review on aggregate production planning under uncertainty: insights from a fuzzy programming perspective. Eng. Appl. Artif. Intell. 128 (2024) 107436. [CrossRef] [Google Scholar]
- S. Enayati and O.Y. Özaltı, Supplier selection under disruption risk with hybrid procurement. Comput. Oper. Res. 165 (2024) 106593. [CrossRef] [Google Scholar]
- F. Zhu, J. Pei, B. Liao, Y. Zhou and P. M. Pardalos, A modified variable neighborhood search algorithm for dynamic lot-sizing with supplier selection under varying delivery time quotation. Comput. Oper. Res. 164 (2024) 106532. [CrossRef] [Google Scholar]
- O. Jadidi, S. Cavalieri and F. Firouzi, Supplier selection and order allocation problem under demand and supply uncertainty with return policy. Appl. Math. Model. 133 (2024) 65–78. [CrossRef] [Google Scholar]
- Y. Wang, W. Wang, Z. Wang, M. Deveci, S.K. Roy and S. Kadry, Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method. Inf. Sci. (N Y) 664 (2024) 120326. [CrossRef] [Google Scholar]
- S.C. Tsai, Y. Yeh, H. Wang and T.C. Chou, Efficient optimization in stochastic production planning problems with product substitution. Comput. Oper. Res. 164 (2024) 106544. [CrossRef] [Google Scholar]
- H. Dehghan Shoorkand, M. Nourelfath and A. Hajji, A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning. Reliab. Eng. Syst. Saf. 241 (2024) 109707. [CrossRef] [Google Scholar]
- F. Solari, N. Lysova, M. Bocelli, A. Volpi and R. Montanari, Perishable product inventory management in the case of discount policies and price-sensitive demand: discrete time simulation and sensitivity analysis. Proc. Comput. Sci. 232 (2024) 1233–1241. [CrossRef] [Google Scholar]
- G.D.H. Claassen, P. Kirst, A.T.T. Van, J.C.M.A. Snels, X. Guo and P. van Beek, Integrating time-temperature dependent deterioration in the economic order quantity model for perishable products in multi-echelon supply chains. Omega (Westport) 125 (2024) 103041. [Google Scholar]
- B. Li and T. Huang, Stochastic optimal control and piecewise parameterization and optimization method for inventory control system improvement. Chaos Solitons Fractals 178 (2024) 114258. [CrossRef] [Google Scholar]
- L. Liu, Y. Tu, W. Zhang and W. Shen, Supplier selection for emergency material based on group exponential TODIM method considering hesitant fuzzy linguistic set: a case study of China. Socioecon. Plann. Sci. 94 (2024) 101944. [CrossRef] [Google Scholar]
- P. Ghadimi, K. Sar and A.H. Azadnia, An integrated decision-making process for sustainable supplier selection and order allocation in the automotive industry. Proc. CIRP 122 (2024) 1036–1041. [CrossRef] [Google Scholar]
- K. Kara, A.Z. Acar, M. Polat, İ. Önden and G. Cihan Yalı, Developing a hybrid methodology for green-based supplier selection: application in the automotive industry. Expert Syst. Appl. 249 (2024) 123668. [CrossRef] [Google Scholar]
- J. Li, R. Lu, H. Ye, A. Wang, W. Yu and H. Dong, Production planning optimization framework for integrated refinery, ethylene and aromatics industrial chains considering environmental performance. Process Safety Environ. Prot. 185 (2024) 1103–1121. [CrossRef] [Google Scholar]
- A. Karimi-Zare, H. Shakouri, G.A. Kazemi and E.-S. Kim, Aggregate production planning and energy supply management in steel industry with an onsite energy generation system: a multi-objective robust optimization model. Int. J. Prod. Econ. 269 (2024) 109149. [CrossRef] [Google Scholar]
- S. Yousefi, M. Baqeri, B.M. Tosarkani, S.H. Amin and H. Zolfagharinia, A decision support framework for sustainable production planning of paper recycling systems. Comput. Ind. Eng. 183 (2023) 109500. [CrossRef] [Google Scholar]
- C.-F. Chien, P.-C. Kuo, P.-C. Sun and H.-A. Kuo, Green production planning for circular supply chain and resource management: an empirical study for high-tech textile dyeing. Resour. Conserv. Recycl. 204 (2024) 107499. [CrossRef] [Google Scholar]
- E.B. Tirkolaee, A.E. Torkayesh, M. Tavana, A. Goli, V. Simic and W. Ding, An integrated decision support framework for resilient vaccine supply chain network design. Eng. Appl. Artif. Intell. 126 (2023) 106945. [CrossRef] [Google Scholar]
- A. Rajabi-Kafshgar, I. Seyedi and E.B. Tirkolaee, Circular closed-loop supply chain network design considering 3D printing and PET bottle waste. Environ. Dev. Sustain. (2024) 1–37. [Google Scholar]
- A. Ala, V. Simic, N. Bacanin and E.B. Tirkolaee, Blood supply chain network design with lateral freight: a robust possibilistic optimization model. Eng. Appl. Artif. Intell. 133 (2024) 108053. [CrossRef] [Google Scholar]
- E.B. Tirkolaee, Z. Dashtian, G.-W. Weber, H. Tomaskova, M. Soltani and N.S. Mousavi, An integrated decision-making approach for green supplier selection in an agri-food supply chain: threshold of robustness worthiness. Mathematics 9 (2021) 1304. [CrossRef] [Google Scholar]
- S.K. Roy, M. Pervin and G.W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. J. Ind. Manage. Optim. 16 (2020) 553–578. [CrossRef] [Google Scholar]
- H. Mirzaee, H. Samarghandi and K. Willoughby, A robust optimization model for green supplier selection and order allocation in a closed-loop supply chain considering cap-and-trade mechanism. Expert Syst. Appl. 228 (2023) 120423. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.