Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 4093 - 4117 | |
DOI | https://doi.org/10.1051/ro/2024147 | |
Published online | 07 October 2024 |
- K. Abuasbeh, R. Shafqat, A. Alsinai and M. Awadalla, Analysis of the mathematical modelling of COVID-19 by using mild solution with delay caputo operator. Symmetry 15 (2023) 286. [CrossRef] [Google Scholar]
- X. Ai, X. Liu, Y. Ding and H. Li, Dynamic analysis of a COVID-19 vaccination model with a positive feedback mechanism and time-delay. Mathematics 10 (2022) 1583. [CrossRef] [Google Scholar]
- S.M. Al-Tuwairqi and S.K. Al-Harbi, A time-delayed model for the spread of COVID-19 with vaccination. Sci. Rep. 12 (2022) 19435. [CrossRef] [Google Scholar]
- A. AlArjani, M.T. Nasseef, S.M. Kamal, B.S. Rao, M. Mahmud and M.S. Uddin, Application of mathematical modeling in prediction of covid-19 transmission dynamics. Arab. J. Sci. Eng. 47 (2022) 10163–10186. [CrossRef] [PubMed] [Google Scholar]
- M. Amaku, D.T. Covas, F.A.B. Coutinho, R.S. Azevedo and E. Massad, Modelling the impact of delaying vaccination against SARS-CoV-2 assuming unlimited vaccine supply. Theor. Biol. Med. Model. 18 (2021) 1–11. [CrossRef] [Google Scholar]
- Available Online. https://www.covid19india.org/ (Accessed on April 2022). [Google Scholar]
- H.H. Ayoub, H. Chemaitelly and L.J. Abu-Raddad, Epidemiological impact of novel preventive and therapeutic HSV-2 vaccination in the United States: mathematical modeling analyses. Vaccines 8 (2020) 366. [CrossRef] [PubMed] [Google Scholar]
- O. Babasola, O. Kayode, O.J. Peter, F.C. Onwuegbuche and F.A. Oguntolu, Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate. Inform. Med. Unlocked (2022) 101124. [CrossRef] [Google Scholar]
- M. Barman and N. Mishra, A time-delay SEAIR model for COVID-19 spread. In: 2020 IEEE 4th Conference on Information & Communication Technology (CICT). IEEE (2020) 1–6. [Google Scholar]
- A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems. Springer (2006). [Google Scholar]
- J. Benest, S. Rhodes, M. Quaife, T.G. Evans and R.G. White, Optimising vaccine dose in inoculation against SARS-CoV-2, a multi-factor optimisation modelling study to maximise vaccine safety and efficacy. Vaccines 9 (2021) 78. [CrossRef] [PubMed] [Google Scholar]
- S. Bugalia, J.P. Tripathi and H. Wang, Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India. Math. Biosci. Eng. 20 (2023) 4673–4689. [Google Scholar]
- Z. Cao, Q. Zhang, X. Lu, D. Pfeiffer, Z. Jia, H. Song and D.D. Zeng, Estimating the effective reproduction number of the 2019-nCoV in China. MedRxiv (2020). [Google Scholar]
- R. Castro, R. Santos, G. Sousa, Y. Pinheiro, R. Martins, M. Pereira and R. Silva, Spatial dynamics of the COVID-19 pandemic in Brazil. Epidemiol. Infect. 149 (2021). [CrossRef] [Google Scholar]
- K. Chatterjee, K. Chatterjee, A. Kumar and S. Shankar, Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model. Med. J. Armed Forces India 76 (2020) 147–155. [CrossRef] [Google Scholar]
- N. Chitnis, J.M. Hyman and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70 (2008) 1272–1296. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- O. Diekmann, J. Heesterbeek and M.G. Roberts, The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7 (2010) 873–885. [CrossRef] [Google Scholar]
- H.P. Fischer, Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior. Alcohol Res. Health 31 (2008) 49. [Google Scholar]
- G. Gonzalez-Parra, Analysis of delayed vaccination regimens: A mathematical modeling approach. Epidemiologia 2 (2021) 271–293. [CrossRef] [Google Scholar]
- N. Gozalpour, E. Badfar and A. Nikoofard, Transmission dynamics of novel coronavirus SARS-CoV-2 among healthcare workers, a case study in Iran. Nonlinear Dyn. 105 (2021) 3749–3761. [CrossRef] [PubMed] [Google Scholar]
- M. Grave, A. Viguerie, G.F. Barros, A. Reali and A.L. Coutinho, Assessing the spatio-temporal spread of COVID-19 via compartmental models with diffusion in Italy, USA, and Brazil. Arch. Comput. Methods Eng. 28 (2021) 4205–4223. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- N. Guglielmi, E. Iacomini and A. Viguerie, Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19. Math. Methods Appl. Sci. 45 (2022) 4752–4771. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- N. Guglielmi, E. Iacomini and A. Viguerie, Identification of time delays in COVID-19 data. Epidemiol. Methods 12 (2023) 20220117. [CrossRef] [Google Scholar]
- J.K. Hale, Functional differential equations. Analytic Theory of Differential Equations: The Proceedings of the Conference at Western Michigan University, Kalamazoo, from 30 April to 2 May 1970. Springer (2006) 9–22. [Google Scholar]
- C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu and Z. Cheng, Clinical features of patients infected with 2019 novel coronavirus in wuhan, China. The Lancet 395 (2020) 497–506. [CrossRef] [Google Scholar]
- B.P. Ingalls, Mathematical Modeling in Systems Biology: An Introduction. MIT press (2013). [Google Scholar]
- J.P. Keener, Biology in time and space: a partial differential equation modeling approach, Vol. 50. American Mathematical Soc. (2021). [Google Scholar]
- I. Kiselev, I. Akberdin and F. Kolpakov, Delay-differential SEIR modeling for improved modelling of infection dynamics. Sci. Rep. 13 (2023) 13439. [CrossRef] [Google Scholar]
- P. Kumar and V. Suat Erturk. The analysis of a time delay fractional Covid-19 model via Caputo type fractional derivative. Math. Methods Appl. Sci. 46 (2023) 7618–7631. [CrossRef] [MathSciNet] [Google Scholar]
- F.M. Legesse, K.P. Rao, T.D. Keno, Modeling and optimal control analysis applied to real cases of COVID-19 pandemic with double dose vaccination in Ethiopia. J. Appl. Math. 2023 (2023). [CrossRef] [Google Scholar]
- Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S. Leung, E.H. Lau, J.Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T.T. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung and Z. Feng, Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Engl. J. Med. 382 (2020) 1199–1207. [CrossRef] [PubMed] [Google Scholar]
- Z. Li, J. Zhao, Y. Zhou, L. Tian, Q. Liu, H. Zhu and G. Zhu, Adaptive behaviors and vaccination on curbing COVID-19 transmission: Modeling simulations in eight countries. J. Theor. Biol. 559 (2023) 111379. [CrossRef] [Google Scholar]
- Y. Liu, A.A. Gayle, A. Wilder-Smith and J. Rocklv, The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 27 (2020). [Google Scholar]
- P.O. Lolika and M. Helikumi, Global stability analysis of a COVID-19 epidemic model with incubation delay. Math. Model. Control 3 (2023) 23–38. [CrossRef] [Google Scholar]
- H. Lu, Y. Ding, S. Gong and S. Wang, Mathematical modeling and dynamic analysis of siqr model with delay for pandemic covid-19. Math. Biosci. Eng. 18 (2021) 3197–3214. [CrossRef] [MathSciNet] [Google Scholar]
- J. Lv and W. Ma, Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein. Appl. Math. Lett. 142 (2023) 108631. [CrossRef] [Google Scholar]
- C. Marques, O. Forattini and E. Massad, The basic reproduction number for dengue fever in Sao Paulo state, Brazil: 1990–1991 epidemic. Trans. R. Soc. Trop. Med. Hyg. 88 (1994) 58–59. [CrossRef] [Google Scholar]
- M. Martcheva, An Introduction to Mathematical Epidemiology, Vol. 61. Springer (2015). [Google Scholar]
- D. Martínez-Rodríguez, G. Gonzalez-Parra and R.-J. Villanueva, Analysis of key factors of a SARS-CoV-2 vaccination program: A mathematical modeling approach. Epidemiologia 2 (2021) 140–161. [CrossRef] [Google Scholar]
- H. Megatsari, D. Kusuma, E. Ernawaty and N.K. Putri, Geographic and socioeconomic inequalities in delays in COVID-19 vaccinations: A cross-sectional study in Indonesia. Vaccines 10 (2022) 1857. [CrossRef] [PubMed] [Google Scholar]
- S.M. Moghadas, T.N. Vilches, K. Zhang, S. Nourbakhsh, P. Sah, M.C. Fitzpatrick and A.P. Galvani, Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS Biol. 19 (2021) e3001211. [CrossRef] [Google Scholar]
- Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith and J.G. Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Natl. Acad. Sci. 108 (2011) 8767–8772. [CrossRef] [PubMed] [Google Scholar]
- Z. Mukandavire, D.L. Smith and J.G. Morris Jr., Cholera in Haiti: reproductive numbers and vaccination coverage estimates. Sci. Rep. 3 (2013) 1–8. [CrossRef] [Google Scholar]
- H. Nishiura, K. Mizumoto, W.E. Villamil-Gómez and A.J. Rodríguez-Morales, Preliminary estimation of the basic reproduction number of Zika virus infection during Colombia epidemic, 2015–2016. Travel Med. Infect. Dis. 14 (2016) 274–276. [CrossRef] [Google Scholar]
- S. Paul and E. Lorin, Estimation of COVID-19 recovery and decease periods in Canada using delay model. Sci. Rep. 11 (2021) 23763. [Google Scholar]
- A.K. Paul and M.A. Kuddus, Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Results Phys. 35 (2022) 105392. [CrossRef] [Google Scholar]
- S. Pedro, H. Rwezaura and J. Tchuenche, Time-varying sensitivity analysis of an influenza model with interventions. Int. J. Biomath. 15 (2022) 2150098. [CrossRef] [Google Scholar]
- B. Pell, M.D. Johnston and P. Nelson, A data-validated temporary immunity model of COVID-19 spread in Michigan. Math. Biosci. Eng. 19 (2022) 10122–10142. [CrossRef] [MathSciNet] [Google Scholar]
- O.J. Peter, H.S. Panigoro, A. Abidemi, M.M. Ojo and F.A. Oguntolu, Mathematical model of COVID-19 pandemic with double dose vaccination. Acta Biotheor. 71 (2023) 9. [CrossRef] [PubMed] [Google Scholar]
- M. Radha and S. Balamuralitharan, A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay. Adv. Differ. Equ. 2020 (2020) 1–20. [NASA ADS] [CrossRef] [Google Scholar]
- F. Rihan and H. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE. Results Phys. 28 (2021) 104658. [CrossRef] [Google Scholar]
- Y.B. Ruhomally, M. Mungur, A.A.H. Khoodaruth, V. Oree and M.Z. Dauhoo, Assessing the impact of contact tracing, quarantine and red zone on the dynamical evolution of the Covid-19 pandemic using the cellular automata approach and the resulting mean field system: a case study in mauritius. Appl. Math. Model. 111 (2022) 567–589. [CrossRef] [MathSciNet] [Google Scholar]
- A. Senapati, S. Rana, T. Das and J. Chattopadhyay, Impact of intervention on the spread of COVID-19 in India: A model based study. Preprint: arXiv:2004.04950 (2020). [Google Scholar]
- G. Sepulveda, A.J. Arenas and G. González-Parra, Mathematical Modeling of COVID-19 dynamics under two vaccination doses and delay effects. Mathematics 11 (2023) 369. [CrossRef] [MathSciNet] [Google Scholar]
- S. Sharma, A. Sharma and F. Singh, Did the COVID-19 Lockdown in India Succeed? A Mathematical Study. Math. Model. Comput. Intell. Tech. (2021) 1–18. [Google Scholar]
- B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9 (2020) 462. [CrossRef] [Google Scholar]
- P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
- P. Van den Driessche and J. Watmough, Further notes on the basic reproduction number. Math. Epidemiol. (2008) 159–178. [CrossRef] [Google Scholar]
- J.T. Wu, K. Leung and G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. The Lancet 9 (2020) 398. [Google Scholar]
- W. Yang, Modeling COVID-19 pandemic with hierarchical quarantine and time delay. Dyn. Games Appl. 11 (2021) 892–914. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- F. Yang and Z. Zhang, A time-delay COVID-19 propagation model considering supply chain transmission and hierarchical quarantine rate. Adv. Differ. Equ. 2021 (2021) 1–21. [CrossRef] [Google Scholar]
- M. Yavuz, F. Ö, Co¸sar, F. Günay and F. N. Özdemir. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open J. Modell. Simul. 9 (2021) 299–321. [CrossRef] [Google Scholar]
- S. Zhai, G. Luo, T. Huang, X. Wang, J. Tao and P. Zhou, Vaccination control of an epidemic model with time delay and its application to COVID-19. Nonlinear Dyn. 106 (2021) 1279–1292. [CrossRef] [PubMed] [Google Scholar]
- T. Zhou, Q. Liu, Z. Yang, J. Liao, K. Yang, W. Bai, X. Lu and W. Zhang, Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV. J. Evid. Based Med. 13 (2020) 3–7. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.