Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Operations Research and Mathematical Programming (dedicated to Prof. Alain Quilliot)
|
|
---|---|---|
Page(s) | 5301 - 5308 | |
DOI | https://doi.org/10.1051/ro/2024028 | |
Published online | 06 December 2024 |
- J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis[M]. John Wiley and Sons, New York (1984). [Google Scholar]
- G.Y. Chen, X.X. Huang and X.Q. Yang, Vector Optimization: Set-valued and Variational Analysis. Springer, Berlin (2005). [Google Scholar]
- C.R. Chen, L.L. Li and M.H. Li, Hölder continuity results for nonconvex parametric generalized vector quasiequilibrium problems via nonlinear scalarizing functions. Optimization 65 (2016) 35–51. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problem via improvement sets. J. Optim. Theory Appl. 150 (2011) 516–529. [CrossRef] [MathSciNet] [Google Scholar]
- M. Durea and C. Tammer, Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58 (2009) 449–467. [CrossRef] [MathSciNet] [Google Scholar]
- Chr. Gerstewitz (Tammer), Nichtkonvexe dualit¨at in der vektoroptimierung. Wiss. Z. Tech. Hochsch. Leuna-Merseburg 25 (1983) 357–364. [MathSciNet] [Google Scholar]
- C. Gerth (Tammer) and P. Weidner, Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67 (1990) 297–320. [CrossRef] [MathSciNet] [Google Scholar]
- A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces. Springer-Verlag, New York (2003). [Google Scholar]
- C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization. Eur. J. Oper. Res. 223 (2012) 304–311. [CrossRef] [Google Scholar]
- Y. Han and N.J. Huang, Some Characterizations of the approximate solutions to generalized vector equilibrium problems. J. Ind. Manag. Optim. (2016) 12 1135–1151 [Google Scholar]
- G.W. Luo, Y.F. Peng, Y.M. Liu and J.W. Huang, Continuity of the solution set map to parametric weak vector equilibrium problems. Oper. Res. Trans. (2016) 20 118–124. [Google Scholar]
- Z.Y. Peng and S.S. Chang, On the lower semicontinuity of the set of efficient solutions to parametric generalized systems. Optim. Lett. (2014) 8 159–169. [CrossRef] [MathSciNet] [Google Scholar]
- Z.Y. Peng, X.B. Li, X.J. Long and X.D. Fan, Painle´é-Kuratowski stability of approximate efficient solutions for perturbed semi-infinite vector optimization problems. Optim. Lett. (2018) 12 1339–1356. [CrossRef] [MathSciNet] [Google Scholar]
- Z.Y. Peng, J.W. Peng, X.J. Long and J.C. Yao, On the stability of solutions for semi-infinite vector optimization problems. J. Global Optim. 70 (2018) 55–69. [CrossRef] [MathSciNet] [Google Scholar]
- C. Tammer and C. Zălinescu, Lipschitz properties of the scalarization function and applications. Optimization 59 (2010) 305–319. [CrossRef] [MathSciNet] [Google Scholar]
- S.H. Wang and Q.Y. Li, A projection iterative algorithm for strong vector equilibrium problem. Optimization 64 (2015) 2049–2063. [CrossRef] [MathSciNet] [Google Scholar]
- R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems. Appl. Math. Lett. 29 (2014) 42–C45. [CrossRef] [MathSciNet] [Google Scholar]
- W.Y. Zhang, Z.M. Fang and Y. Zhang, A note on the lower semicontinuity of efficient solutions for parametric vector equilibrium problems. Appl. Math. Lett. (2013) 26 469–C472. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.