Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
|
|
---|---|---|
Page(s) | 5051 - 5062 | |
DOI | https://doi.org/10.1051/ro/2024176 | |
Published online | 06 December 2024 |
- C.S. Adjiman and C.A. Floudas, Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9 (1996) 23–40. [CrossRef] [Google Scholar]
- C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier, A global optimization method, αBB, for general twice-differentiable constrained NLPs – I. Theoretical advances. Comput. Chem. Eng. 22 (1998) 1137–1158. [CrossRef] [Google Scholar]
- I.G. Akrotirianakis and C.A. Floudas, A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30 (2004) 367–390. [CrossRef] [Google Scholar]
- L.T.H. An and P.D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133 (2005) 23–46. [CrossRef] [MathSciNet] [Google Scholar]
- I.P. Androulakis, C.D. Maranas and C.A. Floudas, αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7 (1995) 337–363. [CrossRef] [Google Scholar]
- C.E. Gounaris and C.A. Floudas, Tight convex underestimators for-continuous problems: II. Multivariate functions. J. Glob. Optim. 42 (2008) 69–89. [CrossRef] [Google Scholar]
- Y.A. Guzman, M.M.F. Hasan and C.A. Floudas, Performance of convex underestimators in a branch-and-bound framework. Optim. Lett. 10 (2016) 283–308. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hansen, Global optimization using interval analysis-the multi-dimensional case. Numer. Math. 34 (1980) 247–270. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hansen and G.W. Walster, Global Optimization Using Interval Analysis: Revised and Expanded, Vol. 264. CRC Press (2003). [CrossRef] [Google Scholar]
- M. Hladík, On the efficient gerschgorin inclusion usage in the global optimization αBB method. J. Glob. Optim. 61 (2015) 235–253. [CrossRef] [Google Scholar]
- C.A. Meyer and C.A. Floudas, Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline αBB underestimators. J. Glob. Optim. 32 (2005) 221–258. [CrossRef] [Google Scholar]
- D. Nerantzis and C.S. Adjiman, Tighter αBB relaxations through a refinement scheme for the scaled Gerschgorin theorem. J. Glob. Optim. 73 (2019) 467–483. [CrossRef] [Google Scholar]
- M. Ouanes, H.A.L. Thi, T.P. Nguyen and A. Zidna, New quadratic lower bound for multivariate functions in global optimization. Math. Comput. Simul. 109 (2015) 197–211. [CrossRef] [Google Scholar]
- T. Pham Dinh, N. Nguyen Canh and H.A. Le Thi, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Glob. Optim. 48 (2010) 595–632. [Google Scholar]
- D. Zerrouki and M. Ouanes. C++ code for “tighter convex underestimator for general twice differentiable function for global optimization”. (2024). https://github.com/zerroukidj/alphaBBalgorithm. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.