Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
|
|
---|---|---|
Page(s) | 5185 - 5209 | |
DOI | https://doi.org/10.1051/ro/2024172 | |
Published online | 06 December 2024 |
- M.A. Abolfathi and A. Ebadian, Interval-valued picture fuzzy aggregation information based on Frank operators and their application in group decision making. RAIRO-Oper. Res. 57 (2023) 3191–3222. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M.B. Ahmed, F. Majeed, C. Sanin and E. Szczerbicki, Smart virtual product development (SVPD) system to support product inspection planning in industry 4.0. Proc. Comput. Sci. 176 (2020) 2596–2604. [CrossRef] [Google Scholar]
- V. Alcácer and V. Cruz-Machado, Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22 (2019) 899–919. [Google Scholar]
- S.S. Ali, R. Kaur and S. Khan, Identification of innovative technology enablers and drone technology determinants adoption: a graph theory matrix analysis framework. Oper. Manage. Res. 16 (2023) 830–852. [CrossRef] [Google Scholar]
- A. Anand and M.F. Wani, Product life-cycle modeling and evaluation at the conceptual design stage: a digraph and matrix approach, J. Mech. Design 132 (2010) 091010. [CrossRef] [Google Scholar]
- A. Anand, R.A. Khan and M.F. Wani, Development of a sustainability risk assessment index of a mechanical system at conceptual design stage. J. Clean. Prod. 139 (2016) 258–266. [CrossRef] [Google Scholar]
- Á.J. Arnal, M. Díaz-Ramírez, L. Acevedo, V.J. Ferreira, T. García-Armingol, A.M. López-Sabirón and G. Ferreira, Multicriteria analysis for retrofitting of natural gas melting and heating furnaces for sustainable manufacturing and industry 4.0. J. Energy Res. Technol. 142 (2020) 022203. [CrossRef] [Google Scholar]
- S. Bag and J.H.C. Pretorius, Relationships between industry 4.0, sustainable manufacturing and circular economy: proposal of a research framework. Int. J. Org. Anal. 30 (2020) 864–898. [Google Scholar]
- C. Bai, P. Dallasega, G. Orzes and J. Sarkis, Industry 4.0 technologies assessment: a sustainability perspective. Int. J. Prod. Econ. 229 (2020) 107776. [CrossRef] [Google Scholar]
- W.S. Barbosa, M.M. Gioia, V.G. Natividade, R.F. Wanderley, M.R. Chaves, F.C. Gouvea and F.M. Gonçalves, Industry 4.0: examples of the use of the robotic arm for digital manufacturing processes. Int. J. Interact. Design Manuf. 14 (2020) 1569–1575. [CrossRef] [Google Scholar]
- D. Bechtsis, N. Tsolakis, D. Vlachos and E. Iakovou, Sustainable supply chain management in the digitalisation era: the impact of Automated Guided Vehicles. J. Clean. Prod. 142 (2017) 3970–3984. [CrossRef] [Google Scholar]
- P. Bigaj, J. Bartoszek and M. Trojnacki, The analysis of influence of sensors’ failure on the performance of mobile robot autonomy. J. Autom. Mobile Rob. Intell. Syst. 8 (2014) 31–39. [Google Scholar]
- O. Bongomin, G. Gilibrays Ocen, E. Oyondi Nganyi, A. Musinguzi and T. Omara, Exponential disruptive technologies and the required skills of industry 4.0. J. Eng. (2020). DOI 10.1155/2020/4280156. [Google Scholar]
- S. Bordoloi and B. Kalita, Designing graph database models from existing relational databases. Int. J. Comput. App. 74 (2013) 25–31. [Google Scholar]
- J. Borenstein, H.R. Everett, L. Feng and D. Wehe, Mobile robot positioning: sensors and techniques. J. Rob. Syst. 14 (1997) 231–249. [CrossRef] [Google Scholar]
- G. Büchi, M. Cugno and R. Castagnoli, Smart factory performance and industry 4.0. Technol. Forecasting Soc. Change 150 (2020) 119790. [CrossRef] [Google Scholar]
- W.K. Chen, Graph Theory and its Engineering Applications. Vol. 5. World Scientific (1997). [CrossRef] [Google Scholar]
- P.G.S. Contieri, R. Anholon and L.A. De Santa-Eulalia, Industry 4.0 enabling technologies in manufacturing: implementation priorities and difficulties in an emerging country. Technol. Anal. Strategic Manage. 34 (2022) 489–503. [CrossRef] [Google Scholar]
- G. Dalmarco, F.R. Ramalho, A.C. Barros and A.L. Soares, Providing industry 4.0 technologies: the case of a production technology cluster. J. High Technol. Manage. Res. 30 (2019) 100355. [CrossRef] [Google Scholar]
- A. Das and S. Dey, Global manufacturing value networks: assessing the critical roles of platform ecosystems and Industry 4.0. J. Manuf. Technol. Manage. 32 (2021) 1290–1311. [CrossRef] [Google Scholar]
- N.K. Dev, R. Shankar, Z.G. Zacharia and S. Swami, Supply chain resilience for managing the ripple effect in Industry 4.0 for green product diffusion. Int. J. Phys. Distrib. Logistics Manage. 51 (2021) 897–930. [CrossRef] [Google Scholar]
- R.K. Dhurkari, MCDM methods: practical difficulties and future directions for improvement. RAIRO-Oper. Res. 56 (2022) 2221–2233. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M. Erdogan, B. Ozkan, A. Karasan and I. Kaya, Selecting the best strategy for industry 4.0 applications with a case study, in Industrial Engineering In The Industry 4.0 Era. Springer, Cham (2018) 109–119. [Google Scholar]
- G. Fedorko, V. Molnár, S. Honus, M. Beluško and M. Tomašková, Influence of selected characteristics on failures of the conveyor belt cover layer material. Eng. Failure Anal. 94 (2018) 145–156. [CrossRef] [Google Scholar]
- A. Felsberger, F.H. Qaiser, A. Choudhary and G. Reiner, The impact of Industry 4.0 on the reconciliation of dynamic capabilities: evidence from the European manufacturing industries. Prod. Planning Control 33 (2022) 277–300. [CrossRef] [Google Scholar]
- V.S. Gadakh and V.B. Shinde, Selection of cutting parameters in side milling operation using graph theory and matrix approach. Int. J. Adv. Manuf. Technol. 56 (2011) 857–863. [CrossRef] [Google Scholar]
- O.P. Gandhi and V.P. Agrawal, Failure cause analysis – a structural approach. J. Pressure Vessel Technol. 118 (1996) 434–440. [CrossRef] [Google Scholar]
- N.K. Geetha and P. Sekar, Graph theory matrix approach – a qualitative decision making tool. Mater. Today: Proc. 4 (2017) 7741–7749. [CrossRef] [Google Scholar]
- R. Goel and P. Gupta, Robotics and industry 4.0, in A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development. (2020) 157–169. [Google Scholar]
- M. Goswami and Y. Daultani, Make-in-India and Industry 4.0: technology readiness of select firms, barriers and socio-technical implications. TQM J. (2021). DOI: 10.1108/TQM-06-2021-0179. [Google Scholar]
- N. Harikannan, S. Vinodh and A. Gurumurthy, Sustainable industry 4.0an exploratory study for uncovering the drivers for integration. J. Model. Manag. 16 (2020) 357–376. [Google Scholar]
- M. Hernandez-de-Menendez, R. Morales-Menendez, C.A. Escobar and M. McGovern, Competencies for industry 4.0. Int. J. Interact. Design Manuf. 14 (2020) 1511–1524. [CrossRef] [Google Scholar]
- M. Hincapié, A. Valdez, D. Güemes-Castorena and M. Ramírez, Use of laboratory scenarios as a strategy to develop smart factories for Industry 4.0. Int. J. Interact. Design Manuf. 14 (2020) 1285–1304. [CrossRef] [Google Scholar]
- V. Jain and P. Ajmera, Modelling the enablers of industry 4.0 in the Indian manufacturing industry. Int. J. Prod. Perf. Manage. 70 (2020) 1233–1262. [Google Scholar]
- A. Jamwal, R. Agrawal, M. Sharma and A. Giallanza, Industry 4.0 technologies for manufacturing sustainability: a systematic review and future research directions. Appl. Sci. 11 (2021) 5725. [CrossRef] [Google Scholar]
- Z. Jan, F. Ahamed, W. Mayer, N. Patel, G. Grossmann, M. Stumptner and A. Kuusk, Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities. Expert Syst. App. 216 (2023) 119456. [CrossRef] [Google Scholar]
- M. Javaid, S. Khan, A. Haleem and S. Rab, Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. Benchmarking Int. J. 30 (2022) 3753–3790. [Google Scholar]
- M. Javaid, I.H. Khan, R.P. Singh, S. Rab and R. Suman, Exploring contributions of drones towards Industry 4.0. Industrial Robot: Int. J. Robot. Res. Appl. 49 (2021) 476–490. [Google Scholar]
- W.B. Jurkat and H.J. Ryser, Matrix factorizations of determinants and permanents. J. Algebra 3 (1966) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kamble, A. Gunasekaran and N.C. Dhone, Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. Int. J. Prod. Res. 58 (2020) 1319–1337. [CrossRef] [Google Scholar]
- K. Karuppiah, B. Sankaranarayanan, S.M. Ali, P. Chowdhury and S.K. Paul, An integrated approach to modeling the barriers in implementing green manufacturing practices in SMEs. J. Clean. Prod. 265 (2020) 121737. [CrossRef] [Google Scholar]
- T.R. Kurfess, C. Saldana, K. Saleeby and M.P. Dezfouli, A review of modern communication technologies for digital manufacturing processes in industry 4.0. J. Manuf. Sci. Eng. 142 (2020) 1–8. [CrossRef] [Google Scholar]
- Z. Li, Y. Wang and K.S. Wang, Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv. Manuf. 5 (2017) 377–387. [CrossRef] [Google Scholar]
- Y. Liu, X. Ma, L. Shu, G.P. Hancke and A.M. Abu-Mahfouz, From Industry 4.0 to Agriculture 4.0: current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inf. 17 (2020) 4322–4334. [Google Scholar]
- M. Liu, T. Lin, F. Chu, F. Zheng and C. Chu, A new and general stochastic parallel machine ScheLoc problem with limited location capacity and customer credit risk. RAIRO-Oper. Res. 57 (2023) 1179–1193. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M.A. Lopes and R.A. Martins, Mapping the impacts of industry 4.0 on performance measurement systems. IEEE Lat. Am. Trans. 19 (2021) 1912–1923. [CrossRef] [Google Scholar]
- C.G. Machado, M.P. Winroth and E.H.D. Ribeiro da Silva, Sustainable manufacturing in Industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58 (2020) 1462–1484. [CrossRef] [Google Scholar]
- N. Medić, Z. Anišić, B. Lalić, U. Marjanović and M. Brezocnik, Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: Industry 4.0 perspective. Adv. Prod. Eng. Manage. 14 (2019) 483–493. [Google Scholar]
- M.A. Moktadir, H.B. Ahmadi, R. Sultana, J.J. Liou and J. Rezaei, Circular economy practices in the leather industry: a practical step towards sustainable development. J. Clean. Prod. 251 (2020) 119737. [CrossRef] [Google Scholar]
- B. Motyl and S. Filippi, Trends in engineering education for additive manufacturing in the industry 4.0 era: a systematic literature review. Int. J. Interact. Design Manuf. 15 (2021) 103–106. [CrossRef] [Google Scholar]
- M.F. Mubarak, S. Tiwari, M. Petraite, M. Mubarik and R.Z.R.M. Rasi, 2021. How Industry 4.0 technologies and open innovation can improve green innovation performance? Manage. Environ. Qual. Int. J. 32 (2021) 1007–1022. [CrossRef] [Google Scholar]
- S. Narula, S. Prakash, M. Dwivedy, V. Talwar and S.P. Tiwari, Industry 4.0 adoption key factors: an empirical study on manufacturing industry. J. Adv. Manage. Res. 17 (2020) 697–725. [CrossRef] [Google Scholar]
- S. Narula, H. Puppala, A. Kumar, G.F. Frederico, M. Dwivedy, S. Prakash and V. Talwar, Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean. Prod. 305 (2021) 127141. [CrossRef] [Google Scholar]
- W.P. Neumann, S. Winkelhaus, E.H. Grosse and C.H. Glock, Industry 4.0 and the human factor – a systems framework and analysis methodology for successful development. Int. J. Prod. Econ. 233 (2021) 107992. [CrossRef] [Google Scholar]
- R. Pansare, G. Yadav and M.R. Nagare, Integrating operational excellence strategies with Industry 4.0 technologies through reconfigurable manufacturing system practices. TQM J. 36 (2024) 3–23. [CrossRef] [Google Scholar]
- M.P. Pessôa and J.J. Becker, Smart design engineering: a literature review of the impact of the 4th industrial revolution on product design and development. Res. Eng. Design 31 (2020) 175–195. [CrossRef] [Google Scholar]
- A. Raj, G. Dwivedi, A. Sharma, A.B.L. de Sousa Jabbour and S. Rajak, Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: an inter-country comparative perspective. Int. J. Prod. Econ. 224 (2020) 107546. [CrossRef] [Google Scholar]
- K. Rinat, G. Thakur, M. Gupta, T.N.P. Madhuri and S. Bansal, Comparative analysis of big data computing in Industry 4.0 and Industry 5.0: an experimental study, in BIO Web of Conferences. Vol. 86. EDP Sciences (2024) 01068. [Google Scholar]
- M. Rossini, F. Costa, G.L. Tortorella and A. Portioli-Staudacher, The interrelation between Industry 4.0 and lean production: an empirical study on European manufacturers. Int. J. Adv. Manuf. Technol. 102 (2019) 3963–3976. [CrossRef] [Google Scholar]
- V. Sangiorgio, B. Di Pierro, M. Roccotelli and B. Silvestri, Card game analysis for fast multi-criteria decision making. RAIRO-Oper. Res. 55 (2021) 1213–1229. [CrossRef] [EDP Sciences] [Google Scholar]
- M.D. Sezer, M. Ozbiltekin-Pala, Y. Kazancoglu, J.A. Garza-Reyes, A. Kumar and V. Kumar, Investigating the role of knowledge-based supply chains for supply chain resilience by graph theory matrix approach. Oper. Manage. Res. 16 (2023) 1220–1230. [CrossRef] [Google Scholar]
- R.K. Singh, S. Agrawal and S. Modgil, Developing human capital 4.0 in emerging economies: an industry 4.0 perspective. Int. J. Manpower 43 (2021) 286–309. [Google Scholar]
- N. Singhal, An empirical investigation of Industry 4.0 preparedness in India. Vision 25 (2021) 300–311. [CrossRef] [Google Scholar]
- A.K. Sinha and A. Anand, Towards fuzzy preference relationship based on decision making approach to access the performance of suppliers in environmental conscious manufacturing domain. Comput. Ind. Eng. 105 (2017) 39–54. [CrossRef] [Google Scholar]
- G. Subramanian, B.T. Patil and B.B. Gardas, Evaluation of enablers of cloud technology to boost industry 4.0 adoption in the manufacturing micro, small and medium enterprises. J. Modell. Manage. 16 (2021) 944–962. [CrossRef] [Google Scholar]
- A. Talla and S. McIlwaine, Industry 4.0 and the circular economy: using design-stage digital technology to reduce construction waste. Smart Sustain. Built Environ. 13 (2024) 179–198. [CrossRef] [Google Scholar]
- S. Vaidya, P. Ambad and S. Bhosle, Industry 4.0 – a glimpse. Proc. Manuf. 20 (2018) 233–238. [Google Scholar]
- V.A. Wankhede and S. Vinodh, State of the art review on Industry 4.0 in manufacturing with the focus on automotive sector. Int. J. Lean Six Sigma 13 (2021) 692–732. [Google Scholar]
- M.F. Wani and A. Anand, Life-cycle assessment modelling and life-cycle assessment evaluation of a triboelement. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224 (2021) 1209–1220. [Google Scholar]
- F. Yang and S. Gu, Industry 4.0, a revolution that requires technology and national strategies. Complex Intell. Syst. 7 (2021) 1311–1325. [CrossRef] [Google Scholar]
- Z. You and L. Feng, Integration of industry 4.0 related technologies in construction industry: A framework of cyber-physical system. IEEE Access 8 (2020) 122908–122922. [CrossRef] [Google Scholar]
- I. Zolotová, P. Papcun, E. Kajáti, M. Miškuf and J. Mocnej, Smart and cognitive solutions for Operator 4.0: laboratory H-CPPS case studies. Comput. Ind. Eng. 139 (2020) 105471. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.